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Abstract

This thesis presents a two-grid algorithm based on Smoothed Aggrega-
tion Spectral Element Agglomeration Algebraic Multigrid (SA-ρAMGe)
combined with adaptation. The aim is to build an efficient solver for the
linear systems arising from discretization of second-order elliptic partial
differential equations (PDEs) with stochastic coefficients. Examples in-
clude PDEs that model subsurface flow with random permeability field.
During a Markov Chain Monte Carlo (MCMC) simulation process, that
draws PDE coefficient samples from a certain distribution, the PDE co-
efficients change, hence the resulting linear systems to be solved change.
At every such step the system (discretized PDE) needs to be solved and
the computed solution used to evaluate some functional(s) of interest that
then determine if the coefficient sample is acceptable or not. The MCMC
process is hence computationally intensive and requires the solvers used
to be efficient and fast. This fact that at every step of MCMC the re-
sulting linear system changes, makes an already existing solver built for
the old problem perhaps not as efficient for the problem corresponding to
the new sampled coefficient. This motivates the main goal of our study,
namely, to adapt an already existing solver to handle the problem (with
changed coefficient) with the objective to achieve this goal to be faster
and more efficient than building a completely new solver from scratch.
Our approach utilizes the local element matrices (for the problem with
changed coefficients) to build local problems associated with constructed
by the method agglomerated elements (a set of subdomains that cover
the given computational domain). We solve a generalized eigenproblem
for each set in a subspace spanned by the previous local coarse space
(used for the old solver) and a vector, component of the error, that the
old solver cannot handle. A portion of the spectrum of these local eigen-
problems (corresponding to eigenvalues close to zero) form the coarse
basis used to define the new two-level method of our interest. We illus-
trate the performance of this adaptive two-level procedure with a large
set of numerical experiments that demonstrate its efficiency over building
the solvers from scratch.

Keywords: algebraic multigrid (AMG), aggregation AMG, spectral el-
ement-based AMG (AMGe), element agglomeration, adaptive solvers,
stochastic PDEs

Part of the work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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1

Introduction

The main purpose of this introductory chapter is to present the structure
of the thesis, formulate the problem, and summarize some basic facts related
to the finite element method and the resulting stiffness matrices.

In Section 1.1, we motivate the need for introducing randomness in the
coefficients of the partial differential equations (or PDEs). We also specify the
PDE coefficients and the difficulties they pose for the linear solver. Section 1.2
is devoted to a short outline of the structure of the thesis. In Section 1.3 we
formulate the problem of our main interest. Section 1.4 provides a summary
of facts about the finite element discretization we use and the properties of the
resulting stiffness matrices.

1.1 Motivation

When a mathematical model is used in practice the parameters of the model
are obtained by real-world measurements. The data collected by measurements
cannot cover the whole spatial area, especially when the area is large, but
measurements are conducted only at a number of locations. However, the
model requires input data for the whole domain. This acts as a source of
uncertainty in the input data which has impact on the quality of the output
from solving the model (see [15]). The impact to the result is relevant, since the
purpose of modeling is as realistic as possible representations of the reality. A
way to reflect and deal with the uncertainty in the input data is to consider the
parameters of the model random which results in randomness in the solution.

We consider elliptic PDEs with random coefficients, more specifically, we
consider diffusion equation with a coefficient representing random permeability
field. Such PDEs are typically solved by a Monte Carlo (MC) method. The
random coefficient is simulated (many realizations of the coefficient are gener-
ated) and for each such realization the resulting deterministic PDE is solved
numerically and hence (approximate) realizations of the solution are obtained.
Thus, a resulting Monte Carlo simulation of the solution (or a related quantity
of interest) is produced. The MC methods for the efficient simulation of the
desired quantities of interest, and the ways the final desired results are assessed
are separate questions (see [15]) that we do not consider in this study. Our
main interest is in building an efficient method for solving the many arising
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1. INTRODUCTION

systems of linear equations which is the most computationally intensive part
of the MC simulation.

There are several requirements on the solver that we want to construct
that are imposed due to the fact of changing PDE coefficients. First, even a
single sampled coefficient (which is a function over the computational domain)
may be highly variable, i.e., it may oscillate with a large amplitude. We also
want the method to handle discontinuous coefficients which may have large
jumps (contrast). Other requirements are the capability to be ready to work
with irregular meshes both in 2D and 3D. Secondly, once an efficient solver is
constructed for one coefficient sample, we want to be able to utilize as much
as possible that solver for a new (in some sense nearby) coefficient sample by
adapting the old solver. This is a main challenge that we address in this study.

The method we implement is an AMG (algebraic multigrid) solver which in
this study is only a two-grid one. The solver changes adaptively which means
that once an AMG solver that is efficient for one realization of the coefficient
has been built, it is later being adapted for a subsequent realization in contrast
to building a new solver from scratch. For the purpose of this adaptivity to be
efficient, we assume that the method for simulating the random coefficient is
such that consequent realizations are “close” in some sense. The latter is the
case in the so-called Markov Chain Monte Carlo simulations (cf., e.g., [16]). Of
course, when we say we build a solver we mean building a (two-level) hierarchy
and in AMG this hierarchy depends on the operator (matrix) and hence on
the random coefficient.

We have implemented a serial (non-parallel) version of the method. Our
implementation makes use of several computational software packages: MFEM
[1] and its companion GLVIS [2], LAPACK, METIS [3], ARPACK [4] and it
counterpart ARPACK++.

The implemented method, and also this thesis, is a result of an internship at
Lawrence Livermore National Laboratory (LLNL) in the summer of 2011 under
the supervision of Panayot Vassilevski1 and with the great help of Christian
Ketelsen2 and Ilya Lashuk3.

1.2 Outline of the Presentation

The thesis is structured in a few chapters and here we give a short layout
of their contents.

Chapter 2 introduces some basic facts from numerical linear algebra. It
also gives short information on how meshes can be considered as graphs (or
relation tables).

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
vassilevski1@llnl.gov, http://people.llnl.gov/vassilevski1.

2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
ketelsen1@llnl.gov, http://people.llnl.gov/ketelsen1.

3Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
lashuk2@llnl.gov, http://people.llnl.gov/lashuk2.
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1.3 Problem Formulation

Chapter 3 presents a quite basic and intuitive description of multigrid,
including algebraic multigrid, and a description of the method we use.

Chapter 4 describes the details of the specific method used in an algorithm-
and implementation-oriented manner. The method and its implementation
are illustrated with numerical results from our experiments with the studied
solver. We also point out to some key parts of the implementation which if
modified approrpiatele may lead to better performance. The chapter finishes
with conclusions and ideas for further development and improvements.

1.3 Problem Formulation

We now formulate the problem of our main interest.
Let Ω be the computational domain in R2 or R3 (polygon, in 2D, or poly-

tope, in 3D) and let ∂Ω = ΓD ∪ ΓN, where ΓD has nonzero measure. Let n be
the unit outward normal vector to the domain boundary.

For a given right-hand side f and boundary data g, we want to solve for u
the second-order diffusion equation

−div (k (x, θ)∇u (x, θ)) = f (x) in Ω× S, (1.1a)

u (x, θ) = g(x) on ∂ΓD × S, (1.1b)
∂u

∂n
= 0 on ∂ΓN × S. (1.1c)

Here, the conductivity field k (x, θ) > 0 for all x ∈ Ω and θ ∈ S. We assume
that f ∈ L2 (Ω). The argument θ is a placeholder representing the stochastic
dependence in k and u. S is just a notation for the “stochastic space.”

We note that, in general, f (and also g) may also be subject to uncertainty
but, as far as the linear solver is concerned, only k affects the matrices of the
linear systems to be solved and, since the properties of these matrices influence
the construction of the solver, we consider f and g to be deterministic.

We use the finite element method (FEM) for discretizing every single deter-
ministic problem (i.e., for a given parameter θ). We consider triangulation of
Ω, i.e., a partitioning of Ω into triangles (in 2D) or in tetrahedra (in 3D), and
we consider piecewise linear, globally continuous finite elements (commonly
denoted as P1 elements). In the case of piecewise linear functions, we may
assume (without loss of generality) that the given coefficient k is a piecewise
constant function on Ω such that it is constant on each element of the trian-
gulation of Ω, for example an average of k on each element is taken. That is,
the coefficient k is generally discontinuous.

The FEM part is readily implemented in the MFEM (see [1]) package which
we have used for the work presented in this study.

1.4 Finite Element Discretization

This section presents a summary of finite element related facts that are
relevant to our study.

We start by introducing some notation. Then, we give the weak formulation

3



1. INTRODUCTION

of the problem, the finite elements used and the systems to be solved. Also,
we outline the main properties of the resulting stiffness matrices. Finally, we
show the meshes and the domain that we used in the numerical experiments
to follow.

1.4.1 Notation

Here we introduce some notation.
We consider column vectors and they are denoted in boldface, e.g., the

vector v. The i-th component of vector v is denoted vi.
The elements of a matrix A are denoted by the corresponding small letter,

aij , which denotes the element of A in its i-th row and j-th column.
Here is a list of notation frequently used in what follows:

u · v =

r∑
i=1

uivi, for u,v ∈ Rr,

Vp =
{
v ∈ H1 (Ω) : v = p on ΓD

}
,

ak (u, v) =

∫
Ω

k∇u · ∇v dx, for u, v ∈ H1 (Ω) , k – conductivity field,

(u, v) = (u, v)0 =

∫
Ω

uv dx, for u, v ∈ L2 (Ω) ,

‖u‖ = ‖u‖0 =
√

(u, u)0 and L2 (Ω) = {u : ‖u‖0 <∞} .

Assuming that u has all its first-order weak derivatives:

|u|1 = ‖∇u‖0 =

∫
Ω

∇u · ∇udx (a semi-norm),

‖u‖1 =
√
‖u‖20 + ‖∇u‖20 and H1 (Ω) = {u : ‖u‖1 <∞} .

Assuming u has all its weak derivatives up to second order:

‖u‖2 =
√
‖u‖21 + |u|22,

where the semi-norm |u|22 denotes the sum of the squares of the L2-norms of
all second-order weak derivatives of u.

Assume we are given a tessellation T of Ω. We denote that τ is an element
of the tessellation T by τ ∈ T. Then

hτ = the longest side (edge) of τ ∈ T,

h = max
τ∈T

hτ .

To explicitly relate the tessellation, T, to its size, h, we write Th = T.
Finally, we introduce the local (element) bilinear form

aτk (u, v) =

∫
τ

k∇u · ∇v dx, for u, v ∈ H1 (Ω) , τ ∈ Th.

4



1.4 Finite Element Discretization

Remark 1.1. Since we assumed that k is constant on each element, then

aτk (u, v) = kτ

∫
τ

∇u · ∇v dx,

where kτ is the value of k on τ . That is, the element stiffness matrix (to be
introduced later on) for τ will simply be the element stiffness matrix computed
for aτ1 (·, ·) (the bilinear form for the Poisson’s equation) multiplied by the
constant kτ .

1.4.2 Weak Formulation

The finite element method for discretizing the different coefficient realiza-
tions of the stochastic PDE uses the weak formulation of the problem.

The weak formulation of (1.1) simply reads (see [19]): Find u ∈ Vg such
that (s.t.)

ak (u, v) = (f, v) , for all v ∈ V0.

1.4.3 Finite Elements

Our efforts are devoted to solving the linear systems of equations arising
from the discretizations of many realizations of the stochastic PDE (1.1). The
systems are obtained as a result of discretizing the continuous PDE for any
given coefficient realization. We briefly describe the finite element discretiza-
tion and introduce the resulting linear systems.

Let the tessellation Th of Ω have n vertices (nodes) with coordinates xi,
i = 1, . . . , n, including nodes on the boundary ∂Ω. We consider the standard
Lagrangian basis functions (nodal basis) φi, i = 1, . . . , n, i.e., φi (xj) = 1 when
i = j and 0 otherwise. That is, we identify the degrees of freedom (dofs) with
the vertices. We also split the set of vertices, Nh, into two sets: ND – those
on ΓD and Nι – the rest. The finite element approximation of the solution of
(1.1) can be written as

uh (x) =
∑

xj∈Nι

ujφj (x) +
∑

xj∈ND

ujφj (x) ,

where we have set uj = g (xj), xj ∈ ND since these are given (known). Sub-
stituting uh into the weak formulation, we get the following linear system of
equations for the unknown coefficients {uj}xj∈Nι∑

xj∈Nι

ujak (φj , φi) = (f, φi)−
∑

xj∈ND

g (xj) ak (φj , φi) ,xi ∈ Nι. (1.2)

Obviously φi ∈ V0 for xi ∈ Nι. The bilinear form ak (·, ·) is clearly sym-
metric and also, it is positive definite on V0. That is, when ak (u, u) = 0 then
∇u = 0, hence u is a constant and the fact that u = 0 on ΓD implies u = 0.
(Of course, the equality signs here have the meaning of almost everywhere.)

If m = |Nι| then we can define the m × m (global) stiffness matrix A

with entries aij = ak(φj , φi), where we consider only the nodal basis functions
corresponding to the nodes in Nι. If, also, u = (ui)xi∈Nι is a vector in Rm and
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1. INTRODUCTION

we denote the right hand side of (1.2) by bi, i = 1, . . . ,m, (1.2) takes the form

Au = b, (1.3)

where b is the vector with components bi, i = 1, . . . ,m. Clearly, the solution
of (1.3) gives the finite element approximation of the solution of (1.1).

We have the following error estimates (see [6, 19, 32])

‖u− uh‖1 ≤ Ch‖u‖2 hence ‖∇ (u− uh)‖ ≤ Ch‖u‖2,
‖u− uh‖ ≤ Ch2‖u‖2,

where C > 0 is a generic constant. The last, L2, error estimate holds if the
PDE is H2-regular, i.e., for any r.h.s., f ∈ L2(Ω), the solution of the PDE, u,
is in H2(Ω).

Remark 1.2. Every FEM related tool that we need (e.g., the stiffness matrix
assembly, building the linear system (1.3) to be solved, mesh refinement etc.)
is available in the MFEM package.

1.4.4 The Stiffness Matrix

This section presents properties of the stiffness matrix that are most rele-
vant for the method we use.

We first show the symmetry and the positive definiteness of the stiffness
matrix and next we refer to the sparsity of the matrix.

1.4.4.1 Symmetry and Positive Definiteness

Here we show the symmetry and positive definiteness of the stiffness matrix.

Definition 1.3. A symmetric matrix Υ, i.e., υij = υji, is called (symmetric)
positive definite or s.p.d. if vTΥv > 0 for every nonzero vector v. Equivalently,
a symmetric matrix is positive definite if all its eigenvalues are strictly positive
(of course, it is well-known fact that the eigenvalues of a symmetric matrix are
real).

Clearly, a s.p.d. matrix defines an inner product. For a s.p.d. matrix Υ we
denote the corresponding inner product by (v,w)Υ = wTΥv and the induced
norm ‖v‖Υ =

√
(v,v)Υ. We call them respectively energy inner product and

energy norm.
The s.p.d. property of the bilinear form implies the s.p.d. property of

the stiffness matrix. Namely, the bilinear form may be considered as an in-
ner product in V0, hence the stiffness matrix A is a Gram matrix for linear
independent functions (vectors). The last implies the s.p.d. property of A.

Remark 1.4. Instead of taking only the nodal basis functions corresponding to
nodes in Nι, as in (1.2), and building the stiffness matrix as a m×m matrix, it
is handy to take all the basis functions and build a n×n matrix and afterwards
impose the essential boundary conditions (Dirichlet boundary conditions) on
the matrix. The result is essentially the same. That is why, in what follows we

6



1.4 Finite Element Discretization

will not distinguish between m and n and will hence consider A as an n × n
matrix.

Remark 1.5. If ΓD has zero measure, i.e., Nι = Nh, then the positive semi-
definiteness of the bilinear form implies the positive semi-definiteness of A and
xTAx = 0 iff (if and only if) x is a constant vector.

1.4.4.2 Sparsity

Amain property of the finite element method is that it leads to the following
important property of the resulting stiffness matrix, namely, its sparsity.

Definition 1.6. A n × n matrix is called sparse if the number of nonzero
elements per column and per row is O(1) as n→∞ (or, in the finite element
case, as h→ 0).

As a consequence, the number of nonzero elements in a sparse matrix is
O(n). Quite naturally, to represent a sparse matrix we need O(n) space (mem-
ory) and this makes it possible to implement standard matrix vector operations
(sparse matrix transposition, sparse matrix vector multiplication, sparse ma-
trix times sparse matrix etc.) so that they can be computed in O(n) time
(operations). This is achieved by the so called compressed sparse row (CSR)
format (see [23], and also [24]) or its dual compressed sparse column (CSC)
format. This is a crucial prerequisite for building optimal solvers, i.e., solvers
that use linear (O(n)) space and time.

Remark 1.7. The MFEM package possesses an implementation of the CSR
format and the operations based on it. It also has classes for operations with
vectors and dense matrices. As a whole, it has a quite good tool-set enabling
implementation of variety of linear solvers.

The local support of the nodal basis functions implies that the sparsity
structure of the stiffness matrix is determined by the topology of the mesh.
That is, aij is nonzero iff xj and xi are vertices of a common element. The latter
implies that if the number of the neighbors for each node is kept uniformly
bounded as h→ 0, which may be achieved by keeping the angles of the elements
bounded away from zero, then the stiffness matrix remains sparse.

Definition 1.8. A family of partitions {Th} is called shape regular if there is
an independent of h constant β > 0 s.t. ρτ ≥ βhτ for all τ ∈ Th, where ρτ is
the diameter of the inscribed in τ circle (or sphere).

That is, the elements cannot be arbitrary thin which guarantees the sparsity
of A. Thus, we assume we have shape regular partitions.

1.4.5 Domain and Meshes for the Experiments

We end this introductory chapter by introducing the meshes and the do-
main used for the numerical experiments we have performed for this study.

7
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(a) The regular mesh (b) The irregular mesh

Figure 1.1: Used mashes.

The numerical experiments are in 2D with computational domain Ω =

(0, 1) × (0, 1). We use regular mesh shown in fig. 1.1a whereas in fig. 1.1b
we show the irregular (unstructured) mesh we use. Both meshes are possibly
subject to one or more steps of uniform refinement, i.e., each triangle is split
into four congruent ones by connecting the midpoint of their edges. The sides
of the unit square are denoted E (east), W (west), N (north), S (south) and
respectively ∂Ω = ΓE ∪ ΓW ∪ ΓN ∪ ΓS .
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2

Basic Linear Algebra Facts

This chapter introduces a few basic facts from numerical linear algebra that
we need and describes the way finite element meshes can be viewed as graphs
which is useful for partitioning the elements into agglomerated elements and
the vertices into aggregates.

In Section 2.1 we recall the notion of matrix conditioning and we point
out the ill-conditioning of the finite element matrices that we deal with. Sec-
tion 2.2 discusses a few facts about stationary iterative methods relevant to our
presentation. Section 2.3 is devoted to the classical singular value decompo-
sition, and Section 2.4 to the Gram-Schmidt orthogonalization, both of which
we use. In Section 2.5, we describe ways to view a mesh as a graph which is
later relevant to the implementation of our method.

2.1 Condition Number

We start by recalling the important notion of condition number in the case
of s.p.d. matrices.

Definition 2.1. Let Υ be a s.p.d. matrix. We call

κ(Υ) =
λmax(Υ)

λmin(Υ)
,

the (spectral) condition number of Υ. Here, λmax(Υ) and λmin(Υ) are the
maximal and the minimal eigenvalues of Υ respectively.

Also, we recal that for a s.p.d. matrix Υ, we have the following property
of the extreme values of the Rayleigh quotient :

λmin(Υ) = min
v

vTΥv

vTv
,

λmax(Υ) = max
v

vTΥv

vTv
.

In general, matrices of linear systems arising from finite element (or finite
difference) discretizations of elliptic PDEs are ill-conditioned, i.e., κ(A) → ∞
as h→ 0. For example, for the Poisson’s equation (−∆u = f) in 2D, on a quasi-
uniform mesh (shape regular mesh for which there exists a mesh-independent
constant γ > 0 s.t. hτ ≥ γh for all τ ∈ Th) the condition number of the
stiffness matrix can be estimated as O(h−2) which is asymptotically sharp (see
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2. BASIC LINEAR ALGEBRA FACTS

[19]). The presence of a discontinuous coefficient with large jumps will make
the condition of the matrix even worse. This makes the problem of solving
(1.3) computationally challenging in the case of large-scale matrices (i.e., for
h→ 0).

2.2 Stationary Iterative Methods

In this section we summarize some facts about the stationary iterative
methods.

We start with a definition and a basic convergence result. Next, we discuss
convergence in A-norm (i.e., A-convergence). We finish the section with a
short description of the notions of convergence factor, stalled convergence, and
spectral equivalence.

2.2.1 Definition of Stationary Iterative Methods and Convergence

We first present the definition of a stationary iterative method. We also
give a characterization of its convergence.

Consider the linear system

Ax = b, (2.1)

where A is a n × n s.p.d. matrix. Let M be a n × n easily invertible matrix,
i.e., linear systems My = g are (computationally) easy to solve. Examples for
M are diagonal, lower or upper triangular matrices with O(1) nonzero entries
per row, etc.

Definition 2.2. For a n × n matrix C with eigenvalues λ1, . . . , λn we define
the spectral radius ρ(C) = max

i=1,...,n
|λi|. (Clearly, ρ(C) = ρ(CT ).)

For a given initial iterate (or approximation, or guess) x0, we consider the
iteration process

M (xk+1 − xk) = b−Axk, for k = 0, 1, . . . ,

or, equivalently,
xk+1 = xk +M−1rk,

or, equivalently,
xk+1 =

(
I −M−1A

)
xk +M−1b,

where rk = b − Axk is the residual (defect) and EM = I − M−1A is the
iteration matrix. Clearly, the exact solution of (2.1) x is a fixed point for the
iteration process. M is called a preconditioner.

If we denote the (algebraic) error ek = x− xk, we have Aek = rk (i.e., the
error solves the defect equation) and, also, ek+1 = EMek. Hence, ek = EkMe0.
Thus, the iteration process is convergent for arbitrary x0 iff lim

k→∞
EkM = O.

For the convergence it is sufficient to have ‖EM‖ < 1 for some norm ‖ · ‖. In
general, it is not a necessary condition for convergence. The convergence is
characterized by the spectral radius of the iteration matrix, i.e., we have (see
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[5, 23, 12]):

Theorem 2.3. lim
k→∞

EkM = O iff ρ (EM ) < 1, i.e., the iteration process is

convergent for any initial guess iff ρ (EM ) < 1.

The theorem above holds not only for iteration matrices of stationary iter-
ative processes but for any square matrix in place of EM .

For a vector z, EMz can be computed by one iteration with x0 = z and
b = 0 and actually this is the way to “simulate” the effect of the iteration
process on the error. If we want to compute M−1z, then we run one iteration
with b = z and x0 = 0. Computing M−1rk is even easier, since M−1rk =

xk+1 − xk. Thus, we won’t ever need to explicitly produce M−1 or EM even
if M is explicitly given. For complicated algorithms neither M nor M−1 may
be explicitly available (or too expensive to form). Nevertheless, if the iteration
process is computationally feasible (through perhaps a complicated algorithm)
then its convergence can be readily studied as described above.

2.2.2 A-convergence

We consider the (monotone) convergence in A-norm (i.e., A-convergence)
when the matrix A of the system is s.p.d.

We use the fact that for a symmetric n × n matrix Υ the spectral de-
composition Υ = QΛQT holds, where Q is orthogonal, i.e., QT = Q−1, and
Λ = diag (λi)

n
i=1 (λi are the eigenvalues of Υ) to define square root of Υ.

Definition 2.4. For s.p.d. Υ let Υ
1
2 = QΛ

1
2QT , where Λ

1
2 = diag

(√
λi
)n
i=1

.
(Clearly, Υ = Υ

1
2 Υ

1
2 .)

Consider the Euclidean norm ‖ · ‖. For a symmetric matrix Υ we have
‖Υ‖ = ρ(Υ) and for an arbitrary matrix C we have ‖C‖ =

√
ρ (CTC).

From ‖v‖A =
√
vTAv = ‖A

1
2v‖, using the invertibility of A

1
2 , and denoting

w = A
1
2v, we readily get

sup
v 6=0

‖(I −M−1A)v‖A
‖v‖A

= sup
v 6=0

‖A
1
2 (I −M−1A)v‖
‖A

1
2v‖

= sup
v 6=0

‖(I −A
1
2M−1A

1
2 )A

1
2v‖

‖A
1
2v‖

= sup
w 6=0

‖(I −A
1
2M−1A

1
2 )w‖

‖w‖
.

That is, ‖EM‖A = ‖EM‖, where EM = I − A
1
2M−1A

1
2 . Obviously, (EM )T =

EMT .
Introduce the symmetric preconditioners M = M(M + MT − A)−1MT ,

M̃ = MT (M + MT − A)−1M . The following relations with the composite
iteration matrices hold:

EM = EMTEM ,

E
M̃

= EMEMT ,

EM = EMTEM ,

11
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E
M̃

= EMEMT .

We summarize (see [31, 32]):

Proposition 2.5. The following assertions are equivalent:

(i) ‖EM‖A = ‖EM‖ < 1;
(ii) ‖EMT ‖A = ‖EMT ‖ < 1;
(iii) ‖EM‖A = ‖EM‖ < 1;
(iv) ‖E

M̃
‖A = ‖E

M̃
‖ < 1;

(v) M +MT −A is s.p.d.;
(vi) M̃ is s.p.d.;
(vii) M is s.p.d.

We give the following definition of A-convergence:

Definition 2.6. An iteration process is A-convergent if the A-norm of the
iteration matrix is less that one, or equivalently, if any of the conditions in
Proposition 2.5 hold.

For any M , the A-convergence (‖EM‖A < 1) implies the convergence of
the corresponding iteration.

Since ek+1 = EMek can be equivalently represented as A
1
2ek+1 = EMA

1
2ek,

it is clear that lim
k→∞

EkM = O iff lim
k→∞

EkM = O, i.e., ρ (EM ) < 1 iff ρ (EM ) < 1.

Actually, EM = A−
1
2EMA

1
2 , i.e., EM and EM are similar, and, thus, they have

the same spectrum, hence ρ (EM ) = ρ (EM ).
We note MEMM

−1 =
(
I −AM−1

)
= (EMT )T and, by matrix similarity,

ρ (EM ) = ρ (EMT ), hence the iteration with M is convergent iff the iteration
with MT is convergent.

Consider now a symmetric M . Then, EM is also symmetric. Hence,
‖EM‖A = ‖EM‖ = ρ (EM ) = ρ (EM ). That is, for a symmetric precondi-
tioner, M , the iteration is convergent iff it is A-convergent. Obviously, when
M is symmetric the (A-)convergence implies that M is s.p.d. Actually, the
corresponding iteration is (A-)convergent iff xTMx > 1

2x
TAx for all x ∈ Rn.

Clearly, an iteration with M (possibly non-symmetric) is A-convergent iff
the iteration with M (or, equivalently, with M̃) is (A-)convergent (it is con-
tained in Proposition 2.5).

Remark 2.7. Consider n = 2, A = I, and M−1 = [ 1 1
0 1 ]. Then, EM =

[
0 −1
0 0

]
,

EMT =
[

0 0
−1 0

]
, EM = [ 0 0

0 1 ], and E
M̃

= [ 1 0
0 0 ]. It is straightforward to see that

ρ (EM ) = ρ (EMT ) = 0 and ρ
(
EM

)
= ρ

(
E
M̃

)
= 1. That is, the iteration with

M (and also with MT ) is convergent while the composite iterations are not
(A-)convergent. Using the considerations above (or using ‖EM‖A = ‖EM‖ =√
ρ
(
EM

)
= 1) we conclude that the iteration with M is not A-convergent

although it is convergent. That is, in the non-symmetric case convergence and
A-convergence are not generally equivalent.
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Remark 2.8. As we saw above, using non-symmetric M we may end up with
a convergent iteration that is not A-convergent. Consider a fixed n < ∞
(fixed h in the finite element case). Then, using the well-known fact that on a
finite-dimensional real or complex linear space all norms are equivalent we can
conclude that when an iteration is convergent it also converges in A-norm even
if ‖EM‖A ≥ 1 (i.e., if it is not A-convergent in the sense of Definition 2.6).

We formulate the following well-known results for Gauss-Seidel method
when A is s.p.d. split as D + L + LT , where D is the diagonal of A and L is
the strictly lower triangular part of A.

Corollary 2.9. The forward Gauss-Seidel iteration (the one with M = L+D)
is A-convergent. This also holds for backward Gauss-Seidel (the one with
M = D + LT ) and the symmetric Gauss-Seidel (the one with M or M̃ when
M is the one for forward or backward Gauss-Seidel).

2.2.3 Convergence Factor

We now describe a way to estimate the rate of convergence of a given
iterative method that we use in our numerical experiments.

Let ‖ · ‖ be a given norm. The convergence factor of an iteration process
with M is ‖EM‖. We estimate the convergence factor at the i-th step (i > 0)
of the iteration by

‖ei‖
‖ei−1‖

.

By definition, an average convergence factor at the i-th step (i > 0) of the
iteration is given by the expression(

‖ei‖
‖e0‖

) 1
i

. (2.2)

The asymptotic convergence factor is estimated by
‖em‖
‖em−1‖

, (2.3)

where m is the last step of the iteration, i.e., when the process stops due to
satisfaction of some criterion. Commonly, ρ (EM ) is referred to as (the exact)
asymptotic convergence factor.

Another estimate of the (asymptotic) convergence factor we may use is
based on the last m0 + 1 (1 ≤ m0 ≤ m) iterates. Namely,(

‖em‖
‖em−m0‖

) 1
m0

. (2.4)

If m0 = 1, then (2.4) turns into (2.3); if m0 = m, then (2.4) turns into (2.2) for
i = m. When 1 ≤ m0 � m (2.4) may be used as an estimate of the asymptotic
convergence factor.

Sometimes we may use ‖ · ‖2 instead of ‖ · ‖ and we typically use the A-
norm.
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2.2.4 Stalled Convergence

Very often in practice we encounter cases when the convergence stalls or is
slow, i.e., when ek+1 ≈ ek. We are interested to obtain some information for
the iteration process in such cases from the computed iterates.

Assume that after some number of iteration steps the convergence of the
iteration xk+1 = EMxk stalls, i.e., ‖xk+1‖ ≈ ‖xk‖. This is essentially a power
method and xk is an approximation of an eigenvector of EM corresponding to
the eigenvalue λmax (EM ) ≈ 1, that is, an approximation of an eigenvector of
M−1A corresponding to λmin

(
M−1A

)
≈ 0.

Alternative, but still related way to look at this, is to say that xk is rich in
components of the error that the iteration process cannot damp (reduce) (or
damps them quite slowly). In general, if we run the iteration with a random
initial guess and the convergence after some number of steps is not satisfactory
with respect to (w.r.t.) some criterion, then we consider xk rich in components
of the error that are not reduced with a satisfactory speed, i.e., the iteration
process is not efficient enough on these error components.

2.2.5 Spectral Equivalence

We present here another notion in numerical linear algebra. It is relevant
when optimal solvers are constructed.

Let M be a n× n s.p.d. preconditioner.

Definition 2.10. M is said to be spectrally equivalent to A if there exist
constants C > 0 and c > 0 independent of n (independent of h, in the finite
element case) s.t.

cvTMv ≤ vTAv ≤ C vTMv for all v ∈ Rn.

Clearly, this is an equivalence relation.
If an iteration process using spectrally equivalent preconditioner is con-

vergent, then the convergence factor is uniformly bounded away from unity.
Thus, a desired reduction of the error can be achieved in O(1) iterations and
the question regarding the optimality of the iteration process is reduced to
the ability to implement the single iteration step in O(n) operations. The
multigrid methods that we consider later on have the potential to achieve this
goal.

2.3 Singular Value Decomposition (SVD)

For the method we develop in this thesis we need to construct a linearly
independent subset from a given set of vectors that spans the same space as
the original set, i.e., we need to construct a computational basis for the space
spanned by the given vectors. One way to achieve this is to use the popular
singular value decomposition (or SVD) algorithm.

The following holds (see [18]):
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Theorem 2.11. For any matrix C ∈ Rp×q there exist orthogonal matrices

U = [u1, . . . ,up] ∈ Rp×p and V = [v1, . . . ,vq] ∈ Rq×q

such that we have the following singular value decomposition (SVD):

C = UΣV T ,

where Σ ∈ Rp×q, Σ = diag (σ1, . . . , σk) (k = min{p, q}) and

σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0

are uniquely determined singular values of C.

The vectors u1, . . . ,up and v1, . . . ,vq are called respectively left singular
vectors and right singular vectors.

Let r be s.t. σ1 ≥ · · · ≥ σr > σr+1 = · · · = σk = 0, i.e., the number of
nonzero singular values. Then:

rank(C) = r,

Ker(C) = span {vr+1, . . . ,vq} ,
Range(C) = span {u1, . . . ,ur} .

If we have a set of vectors c1, . . . , cq, some of them might be linearly de-
pendent, and we want to derive a linear independent set (basis) that spans
the same space as the original set of vectors. To achieve this we use SVD.
Namely, we form C = [c1, . . . , cq] and compute its SVD. Thus, we get the set
of linearly independent (actually orthonormal) vectors u1, . . . ,ur that span the
range (column space) of C. Due to rounding error it is quite unlikely to get
singular values that are precisely equal to zero. That is why to determine r we
only take the singular values that are larger than a small tolerance ε times the
largest singular value, i.e., εσ1, and the rest are considered effectively zero.

We compute SVD using the LAPACK routine DGESVD.

2.4 Gram-Schmidt Orthogonalization

When we have a set of orthogonal vectors and we need to add another
vector we do it by orthogonalizing the new vector to the previous set. This
can be achieved by the popular Gram-Schmidt algorithm.

Given a set of orthogonal, w.r.t. some inner product 〈·, ·〉, vectors q1, . . . ,qm
and let x be another vector. Note that x can possibly be linearly dependent
on the first vectors. We want to orthogonalize x to the first vectors, i.e.,
to find a vector qm+1 orthogonal to the others s.t. span {q1, . . . ,qm,x} =

span {q1, . . . ,qm,qm+1}. We do it the simplest way, i.e., by subtracting from
x the orthogonal projection of x on span {q1, . . . ,qm} and the resulting differ-
ence is the desired vector. This is essentially Gram-Schmidt orthogonalization.

That is, we look for qm+1 = x +
m∑
i=1

αiqi, where αi are determined from
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〈qm+1,qj〉 = 0 for all j = 1, . . . ,m. Thus,

αi = − 〈x,qi〉
〈qi,qi〉

, i = 1, . . . ,m.

If x is linearly dependent on the first vectors, then qm+1 = 0 and the initial
system of vectors stays the same, otherwise qm+1 is added to the system. In
the implementation: if 〈qm+1,qm+1〉 is smaller than a certain small threshold,
qm+1 is considered effectively zero and x – linearly dependent on the others.

In the special case of orthonormal initial system αi = −〈x,qi〉 and to
normalize the new vector qm+1 we divide it by

√
〈qm+1,qm+1〉.

2.5 Meshes and Graphs

We finish this chapter by defining two graphs utilizing finite element meshes
that are useful in our future constructions. We also refer to the graph par-
titioning problem. This topic is also relevant to the implementation of our
solver.

2.5.1 Mesh Graphs

We are interested in the following two mesh graphs.

Definition 2.12. The nodal graph of a mesh is the (undirected) graph with
vertices the nodes of the mesh. Two vertices of the graph are adjacent (con-
nected by an edge) if they correspond to mesh nodes of a common element.

Definition 2.13. The dual graph of a mesh is the (undirected) graph with
vertices the elements of the mesh. Two vertices of the graph (elements from
the mesh) are adjacent if these corresponding elements share a side (or a face,
in 3D).

2.5.2 Graph Partitioning

Here we define graph partitioning and refer to the METIS package which
is, actually, what is relevant to the implementation of our solver.

Definition 2.14 (see [21]). The graph partitioning problem is finding k equal,
in number of elements, pairwise disjoint subsets (partitions) of the set of ver-
tices, of the graph, that cover the set of vertices, i.e., their union equals the
set of vertices. The partitioning has an objective to minimize the edgecut, i.e.,
the number of edges that connect vertices from different subsets.

The graph partitioning problem is NP-complete. The package METIS im-
plements multilevel heuristics to approximately and efficiently solve the prob-
lem.

An additional expectation we have is that the partitions (after removing the
edges between different partitions) to be connected as much as possible. The
version METIS 4.0.3 (that we currently use) tries to build connected partitions
but sometimes may return results with some of the partitions not connected.
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There are newer versions (5.0 and above) that can compute approximate so-
lutions to the partitioning problem in which each partition is connected (see
[3]).
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3

Multigrid

This chapter presents basic facts and concepts of multigrid starting with
the example of the smoothing property of classical iterative methods, touching
upon the two-grid algorithm and the basic intuition behind multigrid, end-
ing up with an introduction of algebraic multigrid in the setting suitable of
presenting the method we study.

In Section 3.1 we give a classical example of the smoothing property of the
weighted Jacobi method. Section 3.2 presents the two-grid algorithm which
is the cornerstone of the solver we implement. Section 3.3 gives a short de-
scription of the basic multigrid idea. Section 3.4 is devoted to the algebraic
multigrid including a motivation for the choices we make. In Section 3.5 we
present the method we use.

3.1 Classical Iterative Methods as Smoothers

We start with two of the main concepts in multigrid – the concepts of
smooth and oscillatory components of the error. We give an illustration of the
smoothing property of the classical iterative methods based on the example of
how the weighted Jacobi method acts on the components of the error.

We consider the ordinary differential equation −u′′ = 0 on (0, 1) with zero
boundary conditions and partition the interval in n equal segments. Using
a finite difference discretization, we end up with a linear system having the
(n − 1) × (n − 1) tridiagonal matrix A = tridiag(−1, 2,−1). Also, consider
the weighted (damped) Jacobi method with a weighting factor ω ∈ (0, 1] (an
iteration process with M = 1

ωD, D = 2 I is the diagonal of A). The method
is convergent with an iteration matrix EM = I − ω

2A. Thus, EM and A have
the same eigenvectors wi which are (see [12])

wij = sin

(
jiπ

n

)
for i, j = 1, . . . , n− 1.

We also have the expressions for the respective eigenvalues

λi (A) = 4 sin2

(
iπ

2n

)
,

λi (EM ) = 1− 2ω sin2

(
iπ

2n

)
.
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3.2 The Two-Grid Method

To illustrate the smoothing property in question, the eigenvectors (eigen-
modes or Fourier modes) of A are divided into smooth (low-frequency), for
i < n

2 , and oscillatory (high-frequency), for i ≥ n
2 .

If we consider the error represented like

ek =

n−1∑
i=1

aiw
i,

we readily get

ek+1 = EMek =
n−1∑
i=1

aiλi (EM )wi.

That is, the i-th mode of the error is damped by a factor of λi (EM ). So the re-
duction of the oscillatory modes (related to the upper eigenvalues of A) can be
balanced by properly choosing ω (e.g., ω = 2

3) whereas the reduction factor of
the smooth modes (related to the low eigenvalues of A) can be arbitrary close
to unity as n becomes large. This phenomenon is referred to as the smoothing
property of the damped Jacobi method (see fig. 3.1) – the oscillatory modes are
reduced with a much larger factor than the smooth ones. This property is com-
mon for virtually all classical iteration methods (such as Gauss-Seidel, block-
versions, overlapping Schwarz methods, incomplete LU factorization methods,
etc.) and it actually reflects their slow convergence for discretized second or-
der elliptic PDEs (not only for the above simple 1D example). It is related
to the fact that the modes of A span a very wide range of frequencies – the
eigenvalues of A can be arbitrary small in magnitude as n→∞. This, in turn,
is related to the fact that A is ill-conditioned.

3.2 The Two-Grid Method

In this section we introduce the main algorithm we consider – the two-level
(or two-grid) iteration process.

Let A be the n× n s.p.d. matrix of the system we want to solve and let P
be a full-rank n × nc, nc < n, interpolation (prolongation) matrix (operator).
Let R be a restriction matrix (operator). In our setting R = P T . R and P are
called (intergrid) transfer operators. We define a coarse matrix (operator) via
the variational relation

Ac = P TAP (Galerkin property (relation)).

Clearly, Ac is symmetric and the full-rank property, of P , implies that Ac is
s.p.d. We also require P to be sparse resulting in sparse Ac.

We consider an iteration method with a preconditioner M . In multigrid
context the role ofM is the same as the damped Jacobi used earlier, namely to
act as smoother, that is the role of M is to remove the oscillatory components
of the error. The classical iteration methods are referred also as relaxation
methods when used in a multigrid context, since they exploit local updates
and require O(n) operations per iteration for a given sparse matrix A.
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3. MULTIGRID

Given a current iterate x, we present next the (symmetrized) two-grid (TG),
or two-level (TL), iteration method that computes the two-grid iterate xTG for
solving the given equation Ax = b:

Algorithm 3.1 (TG algorithm). Having the current iterate x we compute the
next TG iterate xTG by performing the following steps:

(i) “pre-smoothing”:

– compute the intermediate iterate

y = x +M−1(b−Ax);

(ii) “coarse-grid correction”:

– restrict the residual
rc = P T (b−Ay);

– solve the coarse-grid defect equation

Acxc = rc;

– interpolate and compute next intermediate iterate

z = y + Pxc;

(iii) “post-smoothing”:

– compute the next two-grid iterate

xTG = z +M−T (b−Az).

The algorithm can be recursively extended to a multigrid version. For
example, a straightforward extension by recursively calling TG on coarser levels
will result in the popular V (1, 1)-cycle. Our focus in what follows is on the
TG algorithm.

Define the operator πA = PA−1
c P TA. It is clearly a projection operator,

i.e., π2
A = πA. If we consider the TG algorithm as a stationary iteration,

x 7→ xTG, it can be rewritten in terms of the (two-grid) preconditioner (see
[31, 32])

B−1
TG = M

−1
+ EMTPA−1

c P T (EMT )T .

The (two-grid) iteration matrix corresponding to Algorithm 3.1 is related to
BTG as follows

ETG = I −B−1
TGA = EMT (I − πA)EM . (3.1)

This is the case, under the assumption that exact solve is used on the coarse
level. Clearly, BTG is symmetric.

We assume that the iteration withM is A-convergent. This, clearly, implies
that B−1

TG (and BTG) is s.p.d. It also implies (see [31, 32]) vTAv ≤ vTBTGv,
for all v, which, in turn, implies the A-convergence of the two-grid method.

The projection I − πA in (3.1) corresponds to the coarse-grid correction.
It might be considered as a stationary iteration where A is preconditioned
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3.3 The Basic Multigrid Idea

by C = P
(
P TAP

)−1
P T , i.e., C is kind of a (coarse) approximation of A−1.

Obviously, Ker(πA) = Ker(P TA) 6= {0} and in this kernel the coarse grid
correction is not efficient and, as a matter of fact, it turns out the coarse-grid
correction alone is not convergent.

Easily, the space where πA acts as identity is equal to Range(P ), hence
Ker(I − πA) = Range(P ). Thus, the coarse-grid correction is quite efficient in
Range(P ), i.e., the coarse-grid correction efficiently reduces the components of
the error in Range(P ). The intuition behind this fact is as follows. Solving the
coarse-grid defect equation (see Algorithm 3.1) we get the coarse approximation
xc of the error. Then, the current intermediate iterate is corrected by Pxc.
Clearly, only the components of the error in Range(P ) will be reduced. The
remaining components of the error must be reduced by the smoother to have
an overall efficient two-grid method. This concept is motivated in more details
in the following section.

3.3 The Basic Multigrid Idea

We now summarize briefly the main intuition behind multigrid.
As already touched upon multigrid may be considered as an interplay be-

tween smoothing and coarse-grid correction in a divide and conquer manner –
the smoother damps the oscillatory error components and the coarse-grid cor-
rection damps what the smoother is not able to reduce, i.e., the smooth error
components, and vice versa. An important requirement is that the coarse-grid
correction must not excite (too much) the oscillatory modes, i.e., to undo the
work done by the smoother, and the smoother, in turn, not to undo the work
done by the coarse-grid correction by exciting too much smooth components
of the error. In the s.p.d. setting if we use A-convergent smoothers and coarse
matrices obtained variationally from the fine-grid ones, the latter requirement
is automatically satisfied.

In geometric multigrid (when actual “physical” grids are present) “smooth”
and “oscillatory” have geometric meaning, i.e., vectors look smooth or oscilla-
tory when plotted. Important property is that smooth vectors on a fine grid
may look oscillatory on a coarse grid, i.e., when the resolution is decreased, thus
coarse-level smoothers will be more efficient to damp modes that were smooth
on the finer grid. This motivates the multigrid idea of applying the smoothers
on a sequence of coarse grids. The fact that we may consider these smooth vec-
tors on a coarse grid comes from the quite intuitive fact that smooth functions
can be well represented (approximated) on a coarse grid (see [27, 11, 28, 12]).
Tightly related to the last is the fact that coarse vectors interpolated on a
fine grid look smooth, i.e., the vectors in Range(P ) look smooth. Actually, we
would expect smooth errors to be in Range(P ), since, as we saw above, the
coarse-grid correction is efficient on Range(P ).

Everything above outlines the fast convergence of multigrid methods, i.e., a
good reduction of the error is achieved in a small number of cycles (iterations).
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3. MULTIGRID

For the method to be efficient it is necessary that each cycle have low complex-
ity. The last is a consequence of the fact that all operations are considerably
faster on coarser levels and all matrices and vectors take up considerably less
memory on coarser levels. Thus, the divide and conquer approach (in the fre-
quency domain) results not only in fast convergence but also in low complexity
of the cycles and hence in a fast overall solver.

3.4 Algebraic Multigrid (AMG)

This section is devoted to a brief introduction to algebraic multigrid which
is our choice for solving the problem of our main interest.

3.4.1 Introduction

We give here some basic thoughts about algebraic multigrid (AMG).
Geometric multigrid is an efficient method for building fast solvers for sys-

tems arising from discretizations of elliptic boundary value problems. It is ap-
plied to solve a discretized PDE when the geometry of the problem is known
– discretizations on increasingly finer grids are used with transfer operators
between the grids based on the geometry of the grids. That is, the coarsening
process, i.e., the process of selecting the coarse levels and defining the interpo-
lation is fixed and, since it is usually kept as simple as possible, fine grids are
usually uniform refinements of coarser grids and linear interpolation is used.
In a finite element setting, the coarsening and interpolation are naturally pre-
defined; if we use nested finite element spaces corresponding to a mesh refine-
ment procedure the coarse matrices are automatically obtained from the fine-
grid matrices variationally via the natural embedding of the coarse spaces into
the fine-grid ones; if linear elements are used, the interpolation is naturally
linear. The burden is on the proper choice of smoothers that reduce the com-
ponents of the error not efficiently reduced by the coarse-grid correction, i.e.,
not in the range of interpolation (see [22, 26, 28, 32]).

For discretized PDEs the user may not have access to the hierarchy of
meshes and discretization operators on coarse levels, or these may not actually
exist if a single unstructured fine mesh is used. Also, even in the case when
such hierarchy is available, the resulting MG method may not be as efficient
(unless expensive smoothers are used). In all such cases an option to use the
multigrid concept in order to achieve reasonable convergence is provided by
the algebraic multigrid originally proposed by Brandt, McCormick and Ruge
in 1981. Although grids and points might not be present, when algebraic
multigrid is involved, the terms are still used although not related to “physical”
grids. Actually, even the word multigrid is not very precise, unlike multilevel,
it is still customarily used. In AMG the smoother is typically fixed and usually
a simple smoother is chosen. The burden is on choosing a coarse space and
interpolation s.t. the coarse-grid correction reduces the components of the error
not efficiently damped by the smoother, i.e., the burden is on building P s.t.
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3.4 Algebraic Multigrid (AMG)

Range(P ) contains the components inefficiently reduced by the smoother. That
is, the construction of P is kind of an inverse problem. The coarsening process
is usually automatic and operator-dependent and uses information provided by
the given matrix. Thus, the AMG concept allows developing methods that
can be efficient for a wide range of problems, robust, and even resulting in so-
called black-box solvers, i.e., ones that use no additional information about the
origin of the system or the structure of the problem at hand and, in principle,
these solvers can be developed separately and independently of the engines
generating the systems to be solved without using any connection between
them.

A main objective when building an AMG solver is to keep the number of
operations per iteration minimal, the best being O(n), and to achieve rate of
convergence similar to geometric multigrid, i.e., optimal or almost optimal.
This is a formidable task in general, which, however, has become feasible in a
number of applications if the problem combined with a suitable solver (used as
a smoother) allows for coarsening, i.e., identifying the slow convergence error
components.

3.4.2 Motivation

We now describe our motivation for choosing AMG instead of geometric
multigrid.

As we already mentioned, even for systems arising from discretizations of
differential equations AMG may be preferred before geometric multigrid (see
[22, 26, 28, 29]), since the burden on the smoother might be too much result-
ing in a too complicated smoother or a suitable smoother may not be known,
especially in 3D. Or, switching the burden to choosing coarse levels and interpo-
lation operators for a fixed smoother may result in a better multilevel method
than the geometric one. Better means not only in convergence properties but
also from an implementation point of view.

If the fine mesh is too irregular it may be very hard or impossible to end
up with enough levels of mesh coarsening, especially in 3D, needed for the
geometric multigrid. In practice, we need solvers that work with irregular
meshes both in 2D and in 3D, this is much easier to achieve with AMG. In
some cases it may be very hard, too expensive, or impossible to find a smoother
that smooths the error enough, e.g., when discontinuous PDE coefficients are
involved (which is our case), especially when the jumps in the coefficients are
very large (which is also our case), then, an alternative is to compensate with
proper (more expensive) coarse spaces, which can be achieved by AMG, which
is our choice.

Considering everything above it is self-explanatory, at this point, why we
choose AMG and not geometric multigrid although we solve systems arising
from finite element discretization of elliptic boundary value problems. How-
ever, it might be tempting to use geometric multigrid considering we have to
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3. MULTIGRID

solve the problem many times with little changes in the matrices. Geometric
multigrid allows us to build once the set of grids and transfer operators and
reuse them for all systems needed to be solved while with algebraic multigrid
they are operator-dependent and may need to be changed (e.g., rebuilt) for each
realization of the coefficient. Geometric multigrid is not a better choice for us
because of the reasons described above, however, at the same time rebuilding
the hierarchy for each realization of the coefficient may render algebraic multi-
grid inefficient. To resolve the latter issue we use adaptation1 which allows
us to adapt (and thus reuse) an already built hierarchy for a matrix for one
realization of the coefficient to matrices for consequent realizations instead of
rebuilding the hierarchy from scratch for each realization.

3.5 The Method We Use

Finally, we may present the method we use.
We should note that the method utilizes the fact that the systems we solve

arise from finite element discretizations of partial differential equations. The
way it uses the mesh is different compared to geometric multigrid and it does
not break the robustness, i.e., it is directly applicable to irregular meshes and
to problems with discontinuous coefficients with large jumps. It is also directly
applicable to 3D problems.

In the sections that follow we first touch upon the smoothed aggregation
AMG and the element-based AMG, which are key ingredients of our AMG
method, and then we get into the main adaptive component of our method.

3.5.1 Smoothed Aggregation AMG

The AMG based on aggregation builds the coarse space by partitioning
the set of variables into mutually disjoint subsets (aggregates) (see [29, 26, 28,
31, 32]). Each aggregate on a fine level brings down a degree of freedom (or
several ones per aggregates, as it will be the case in our method later on) on
the next coarser level. Of course, there is more than one way to choose the
aggregates and the interpolation operators based on these aggregates. The aim
is to achieve good convergence rate for minimal complexity of the V -cycle.

In the original paper [29] a few guiding heuristic principles are presented
and an algorithm is proposed for building the aggregates and respective in-
terpolation operators in the case of linear systems arising from finite element
discretizations of second-order elliptic equations. Similarly to the classical
AMG the coarsening exploits a notion of strong coupling. One of the guid-
ing principles is that every coarse space should represent the constant exactly,
since the constants are the zero energy modes, i.e., they have zero A-norm
aside from essential boundary conditions.

The tentative prolongation operator is built as piecewise constant interpo-
1The words “adaptation”, “adaptive”, “adapt” here have nothing to do with adaptive mesh

refinement. They are used in relation with the solver and the hierarchy for the solver which
is the one that is being adapted aiming to be efficient for a modified operator.
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3.5 The Method We Use

lation, i.e., the value of a coarse-grid dof (which corresponds to an aggregate on
the fine level) is spawned as a value of each fine-grid dof in the corresponding
aggregate. In smoothed aggregation AMG the tentative interpolation opera-
tor is smoothed to produce the final prolongation operator. The smoothing is
done by multiplying the tentative interpolation matrix by an iteration matrix
or, more generally, by a matrix polynomial. An appropriate smoothing results
in energy boundedness of the coarse basis.

In [29] it is assumed that the resulting coarse spaces can be viewed as
being associated with a partition of the domain behaving similarly to finite
elements and it is also claimed (which depends on the construction of the
aggregates) that the method behaves well when strong anisotropy and discon-
tinuous coefficients are present, despite the more restrictive assumptions when
the convergence estimate is derived.

Quite generally it is proven (see [30, 31, 32]), that the V (1, 1)-cycle has
almost optimal convergence, i.e., the V (1, 1)-cycle MG preconditioner B is
almost spectrally equivalent to A. Namely, the upper bound of the constant
K in the spectral equivalence estimate vTAv ≤ vTBv ≤ KvTAv, for all v,
depends polynomially on the number of levels in the hierarchy.

3.5.2 Element-based AMG

The element-based AMG (AMGe) suggests a conceptually different way to
look at the notion of “smooth error”. Its aim is to avoid any premise about the
nature of smooth errors. Instead, it assumes that smooth errors are charac-
terized by the spectrum of the operator. Thus, a different guiding heuristic is
suggested (see [7]) requiring the interpolation to approximate well eigenvectors
corresponding to small eigenvalues of the matrix. In [7] two local measures are
presented which require access to the local stiffness matrices (hence the “ele-
ment-based” part in the name of the method). The purpose of these measures
is to formulate a procedure of building the interpolation aiming to fulfill the
heuristic principle above. Thus, element-based interpolation is achieved. The
method requires a partitioning of the dofs into coarse and fine dofs to be avail-
able. It presents a way to build the interpolation based on the already chosen
coarse dofs.

The spectral AMGe (ρAMGe) (see [13, 14, 31, 32]) suggests a method to
build the entire hierarchy, not just the interpolation, without the necessity of
an a priori available partitioning into coarse and fine dofs. The construction
of intergrid transfer operators is based on the assumption that smooth errors
may be described by means of the eigenvectors of the matrix corresponding
to small eigenvalues. Since obtaining the eigenvectors of the global stiffness
matrix is impractical, it is assumed that smooth errors are characterized by
the low eigenvectors of the local stiffness matrices corresponding the so called
agglomerates which are sets of fine-grid elements. Once obtained, the low
eigenvectors of the local stiffness matrices are patched together to form the
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global interpolation operator. Although a kind of coarse mesh of agglomerates
is involved the coarsening is completely different compared to geometric multi-
grid and the coarse space is built algebraically. This method, however, uses
additional information (not only the given (global) matrix), namely, the local
element matrices and relies on algorithms to generate agglomerated elements.

3.5.3 The Used Method

Here we describe the method we use. Our considerations are based on [10]
which describes the two-grid method we implement. This method is described
first. We extend this two-grid method by using adaptation which is described
at the end.

The method is a combination of both approaches above and the aggregates
are in a way derived from the agglomerates. It is efficient for solving PDEs
with coefficients like ours – discontinuous with large jumps. It is also directly
applicable to irregular meshes and 3D problems. The discontinuities of the
coefficients must be resolved by the discretization only on the fine grid which
holds in our case, since we consider a PDE coefficient that is constant on each
element.

Since our purpose is implementing a method for efficiently solving not just a
single PDE but the stochastic problem, i.e., a sequence of PDEs, we supplement
the method in [10] with adaptation allowing us to reuse much of the already
built hierarchies for solving consequent realizations of the PDE.

In the sections that follow we describe the method for building the interpo-
lation operator and the smoother that we use for the two-grid method. Then,
we present the adaptation procedure we use.

Unless explicitly stated otherwise, the constants are considered positive in
the following sections.

3.5.3.1 Smoothed Aggregation Spectral Element Agglomeration Al-
gebraic Multigrid

This section is devoted to the method for producing the interpolation op-
erator. The smoother we use in the two-grid algorithm is also described. This
section is entirely based on [10].

We consider a tessellation Th and let the respective set of nodes be Nh.
Let k = k(x) be a given positive function that is piecewise constant w.r.t. the
elements of Th. Let G be the (k-weighted) mass matrix, i.e., gij =

∫
Ω

kφiφj dx,

and let DG be its diagonal. Clearly, G is s.p.d.
We assume we have constructed a set TH of na non-overlapping agglomer-

ates (agglomerated elements (AEs)) {T}. An agglomerated element T ∈ TH is,
by definition, a connected set (in the sense of the dual graph of the fine mesh)
of fine-grid elements. We assume that {T} covers the set of fine-grid elements
{τ}. That is, TH forms a partition of Th. Let H be the characteristic mesh size
of TH . It is important to stress that we do not assume H to be comparable in
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any way to h. For each agglomerated element T , we can assemble the nT ×nT
local stiffness matrix AT . We denote its diagonal by DT . We also assume
we are given a set of na aggregates {AT } where each AT is entirely contained
in a unique agglomerated element T , denoted by AT ⊂ T . That is, each AT

contains only nodes of elements in T and {AT } forms a partition of Nh. Of
course, there are interface nodes, i.e., shared by multiple agglomerates. Each
interface node is assigned to a single aggregate among the aggregates within
the agglomerated elements sharing that node.

We solve for each T ∈ TH the following generalized eigenvalue problem

ATqr = λrDTqr, r = 1, . . . , nT , (3.2)

assuming the eigenvectors are ordered in ascending order w.r.t. the magnitude
of their corresponding eigenvalues. We take the first mT ≤ nT eigenvectors
and restrict them to the aggregate AT ⊂ T by extracting only the entries
of the vectors that correspond to the nodes in AT and thus obtaining the
vectors q̃1, . . . , q̃mT . We form QT = [q̃1, . . . , q̃mT ] and by applying SVD (see
Section 2.3) we get the set of orthonormal vectors p1, . . . ,pm′T (m′T ≤ mT )
that span the same space as the columns of QT . Thus, we have as a result the
local tentative interpolation operator PA =

[
p1, . . . ,pm′T

]
.

By applying the above procedure for all agglomerates T ∈ TH and produc-
ing all local tentative prolongation operators, i.e., PA1 , . . . , PAna

, we get as a
result the following n× nc (global) tentative interpolation operator

P =


PA1 0 0

0 PA2 0

0 0
. . .

...
0 0 . . . PAna

 ·
The final n×nc interpolation operator is obtained by smoothing the tentative
one. That is, P = SP , where S (typically in SA AMG) is an appropriate n×n
matrix polynomial. Appropriate choice of the smoothing results in a stable in
energy interpolation. We return to the choice of smoother later on.

For any sparse s.p.d. matrix A and its diagonal DA we have (see [32])
vTAv ≤ κvTDAv, for all v, where κ is an upper bound of the number of
nonzero elements per row of A, i.e., it is uniformly bounded with respect to h
and the coefficient k. Hence ‖D−

1
2

A AD
− 1

2
A ‖ ≤ κ, where ‖ · ‖ is the Euclidean

norm. Similar uniform estimates are valid for any D spectrally equivalent to
DA. Given some s.p.d. matrix D spectrally equivalent to DA we let b be s.t.
‖D−

1
2AD−

1
2 ‖ ≤ b ∈ O(1).

Assuming Th is quasi-uniform and using the fact that k is constant on
the elements of the tessellation Th the following uniform, w.r.t. h and k,
equivalence relations hold (see [10])

cvTDGv ≤ h2 vTDAv ≤ C vTDGv, for all v. (3.3)
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We also assume that the preconditioner M (see Algorithm 3.1) possesses
the following “smoothing” property uniformly w.r.t. h and H (see [10])

vTMv ≤ β
[
vTAv +

b

(H/h)2 ‖v‖
2
D

]
, for all v, (3.4)

and let the following uniform, w.r.t. h and H, coercivity estimate hold (see
[10])

vT
(
M +MT −A

)
v ≥ αvTAv. (3.5)

Now, take S = sν
(
b−1D−1A

)
, where sν(t) is a polynomial of degree ν in

[0, 1] s.t. sν(0) = 1. We use (see [10, 9, 32, 31])

sν(t) = (−1)ν
1

2ν + 1

T2ν+1

(√
t
)

√
t

.

Here Tl(t) denotes the Chebyshev polynomial of the first kind of degree l in
[−1, 1].

Taking mT large enough for each T ∈ TH , under the assumption of quasi-
uniform Th, and taking ν to be of order H

h the following “weak approximation
property” holds uniformly, w.r.t. h, H, and k, for all v ∈ Rn (see [10])

H−1‖v − P
(
P
T
DP

)−1
P
T
Dv‖G ≤ α1‖v‖A. (3.6)

Under the same assumption as above and as a consequence of the energy sta-
bility property of the smoothed interpolation we have the following uniform
estimate, w.r.t. h, H, and k, for all v ∈ Rn (see [10])

‖v − P
(
P
T
DP

)−1
P
T
Dv‖A ≤ α2‖v‖A. (3.7)

Remark 3.2. Under the same assumptions as above, except the one for ν, we
have that for any v ∈ Rn there exists vc ∈ Rnc s.t. the following uniform,
w.r.t. h, H, and k, “weak approximation property” holds (see [10])

H−1‖v − Pvc‖G ≤ α0‖v‖A.

That is, we have the same “weak approximation property” without the smooth-
ing of the prolongation matrix. The smoothing keeps the “weak approximation
property” and additionally results in energy stability and, as a corollary, the
estimate in energy norm (3.7).

As a consequence of (3.6) and (3.7) we have that for any v ∈ Rn there
exists a vc ∈ Rnc s.t.

H−2‖v − Pvc‖2G + ‖v − Pvc‖2A ≤ Ca‖v‖2A (3.8)

holds uniformly w.r.t. h, H, and k.
In [10] it is proven that (3.3), (3.4), (3.5), and (3.8) are sufficient for the

upper boundKTG in the spectral equivalence estimate vTBTGv ≤ KTG vTAv,
for all v ∈ Rn, to be bounded from above uniformly w.r.t. h, H, and k. Clearly,
KTG = 1

1−ρTG , where ρTG is the asymptotic convergence factor (spectral ra-
dius) of the TG iteration.
Remark 3.3. We are not going to use the matrix polynomial above to smooth
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the prolongation operator but we are going to use a much simpler smoother.
More details are found in Chapter 4.

The choice of M , D and the upper bound b

We now turn to the smoother M and the related D and b. The choice of
the smoother is quite relevant, apparently, to the optimal convergence estimate
above.

We choose D to be a particular weighted `1-smoother. Namely, D =

diag (di)
n
i=1, where di =

n∑
j=1
|aij |

√
aii
ajj

. Obviously D is s.p.d., even when A is

positive semi-definite which corresponds to the case when no essential bound-
ary conditions are posed (the same holds for DA). We have (see [10]) the
desired spectral equivalence vTDAv ≤ vTDv ≤ κvTDAv, for all v. We also
have (see [10]) vTAv ≤ vTDv, for all v, which implies that D is A-convergent.
It also allows us to take b = 1 (instead of b = κ when DA is used). Another
corollary is that for the generalized eigenvalue problem

Aqr = λrDqr, r = 1, . . . , n,

the largest eigenvalue is at most 1.
The smoother M that we use is a polynomial smoother. We consider the

following polynomial (see [9, 10]) of degree 3ν + 1 in [0, 1]

pν(t) =
(

1− T 2
2ν+1

(√
t
))

sν (t) .

We have pν(0) = 1, hence pν(t) = 1 − tq3ν(t), where q3ν(t) is an appropriate
polynomial of degree 3ν in [0, 1].

Consider the smoother iteration matrix

I −M−1A = pν
(
b−1D−1A

)
.

That is,
M−1 =

[
I − pν

(
b−1D−1A

)]
A−1.

Thus,

M−1 = b−1D−1Aq3ν

(
b−1D−1A

)
A−1 = b−1 q3ν

(
b−1D−1A

)
D−1, (3.9)

where we use twice the fact that for any polynomial p(t), any square matrix C,
and any invertible matrix T : T−1p (C)T = p

(
T−1CT

)
. Using, also, the fact

that for any polynomial p(t) and any square matrix C: [p (C)]T = p
(
CT
)
we

easily get from (3.9) that M is symmetric. (3.9) also shows that no inverses of
A are involved when applying M−1.

The smoother defined above has the coercivity property (3.5) (see [9, 10]).
The following smoothing property also holds (see [9, 10])

vTMv ≤ β
[
vTAv +

b

(2ν + 1)2 ‖v‖
2
D

]
, for all v.

Thus, taking 2ν + 1 to be of order H
h provides the desired property (3.4).

As we mentioned above, our choice of D implies b = 1. We note that
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the smoother described above is A-convergent. It directly follows from the
coercivity property (3.5).

Remark 3.4. As we described above, the TG algorithm is convergent with
a factor independent of both H and h, thus, independent of how large the
coarsening is, i.e., independent of the magnitude of Hh . Clearly, the magnitude
of the coarsening is compensated by the large polynomial degree of both the
interpolation smoother and the smoother in Algorithm 3.1.

3.5.3.2 Solver Adaptation

Here we give a short description of the adaptation procedure we have stud-
ied. We first present the main idea. Implementation details will be described
in the following Chapter 4.

We recall the notion of stalled convergence introduced in Section 2.2.4.
The basic idea reads: we apply a given iteration method to the system Ax =

0 and monitor its convergence starting with a random initial iterate x0. If
the convergence is not satisfactory, we take the last iterate xm, referred to
as prototype (see [17]), and call it “algebraically smooth”. If the method is
multigrid V -cycle possible reasons for the stalled convergence (see [31, 32]) is
either that the coarse space cannot approximate well some of the components
of the prototype, or the coarse solver cannot damp some of the components in
the prototype. In the case of TG method when the coarse-grid solver is exact
(see Algorithm 3.1), we may ignore the second reason. However, we would
want to incorporate the prototype in Range(P ) aiming at improvement of the
method so that it can handle the unreduced left-over components of xm.

For our problem with changing PDE coefficient, we would not want to solve
the local generalized eigenvalue problems for every single of the many realiza-
tions of the coefficient. We extend the idea of adaptive AMG to avoid building
the hierarchy from scratch. Assume we are given the global stiffness matrix A
computed for a realization k of the coefficient. We have built the interpolation
matrix P using the method above and thus a TG mapping (preconditioner)
BTG is constructed that uses P , A, Ac = P TAP , and a smoother M . We also
have all the components needed for building P ; those are: agglomerated ele-
ments, corresponding aggregates, and all the local vectors from the eigenvalue
problems, their restrictions, and the output of the SVD. Next, we assume that
a new global stiffness matrix A′ (for a realization k′ of the coefficient) is com-
puted (in particular, we may have A′ = A). We assemble the local stiffness
matrices for the new coefficient, i.e., we compute A′T and their corresponding
diagonals D′T for each T ∈ TH . Using the original P , we compute Âc = P TA′P

and we have a new TG mapping B̂TG that uses the old P , and new A′, Âc, and
M ′, where M ′ is the version of the smoother corresponding to A′. We apply
the TG method with B̂TG to A′x = 0 with a random initial guess x0, i.e., we
compute

xr =
(
I − B̂−1

TGA
′
)
xr−1, r ≥ 1.
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We monitor the convergence in A′-norm. If the convergence is not satisfactory,
we take the last iterate xbad = xm. Our purpose is to augment/modify P

using xbad and, thus, produce P ′ which is expected to make the TG-cycle
behave better for the new system. This is done with the adaptive procedure
that we describe next.

For each agglomerated element T ∈ TH , we restrict xbad to T , i.e., we
take the entries of xbad restricted to the fine-grid dofs in T , and we form xbadT .
Consider the low eigenvectors from the original generalized eigenvalue problem
(3.2) used to construct the original local tentative interpolation matrix, i.e.,
we consider q1, . . . ,qmT . We assume that the eigensolver produced qs that
are DT -orthonormal. We orthonormalize (see Section 2.4) xbadT to the system
of vectors q1, . . . ,qmT , w.r.t. the inner product induced by DT , and, thus, we
get the system of vectors q1, . . . ,qmT , q̂, where q̂ may be 0. Next, we build
ZT = [q1, . . . ,qmT , q̂], if q̂ 6= 0, or ZT = [q1, . . . ,qmT ], otherwise. Then, we
solve the generalized eigenvalue problem

A′Tq
′
r = λ′rD

′
Tq
′
r,

in the subspace spanned by q1, . . . ,qmT , q̂. That is, we solve the generalized
eigenvalue problem (

ZTT A
′
TZT

)
qr = λr

(
ZTTD

′
TZT

)
qr. (3.10)

Then, we proceed with building the new tentative interpolation matrix. That
is, we take the first m′′T eigenvectors (in the lower part of the spectrum) from
(3.10) (it will become clear how we actually do it in Chapter 4); we trans-
form them back to the original space by q′r = ZTqr; we restrict them to the
respective aggregate AT ⊂ T ; and after applying SVD (to filter out possi-
ble linear dependence) we get the adapted local tentative interpolation matrix
P ′A =

[
p′1, . . . ,p

′
m′′′T

]
(m′′′T ≤ m′T + 1). It is clear that P ′A is an adaptation

of the original one since it is based on the original vectors q1, . . . ,qmT (i.e.,
an already known information is reused) but also incorporates the new vector
xbadT .

After applying the above procedure to all agglomerates T ∈ TH and produc-
ing the respective adapted local tentative prolongation operators, i.e., P ′A1 , . . . ,

P ′Ana , we get as a result the adapted (global) tentative interpolation operator

P ′ =


P ′A1 0 0

0 P ′A2 0

0 0
. . .

...
0 0 . . . P ′Ana

 ·
The final adapted interpolation operator is obtained by smoothing the tentative
one. That is, P ′ = S′P ′, where S′ is the version of the smoother corresponding
to A′.

At the end, we have the adapted TG operator B′TG that uses P ′, A′, A′c =
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(P ′)T A′P ′, and M ′.

Remark 3.5. Since ZTTD
′
TZT is s.p.d. it is clear that if the eigensolver produces(

ZTTD
′
TZT

)
-orthonormal qr vectors when solving (3.10), then the final ones,

q′r, will also be D′T -orthonormal.

Remark 3.6. If for all T ∈ TH it happens that qmT+1 is 0, i.e., xbadT is lin-
early dependent on q1, . . . ,qmT , then xbad is actually not “bad”. If it is really
“bad”, then for at least one T the vector xbadT will be linearly independent of
q1, . . . ,qmT .

Remark 3.7. We may apply the above procedure repeatedly until the final
adapted TG operator is efficient enough for A′, i.e., until a certain convergence
factor is achieved.

Remark 3.8. For a further consequent realization k′′ of the coefficient and
corresponding matrix A′′ we may adapt either the original BTG or the inter-
mediately adapted one B′TG.

Remark 3.9. We note, that we solve generalized eigenvalue problems for each
agglomerated element, however, unlike building the hierarchy from scratch,
here the eigenvalue problems are of much smaller size (we solve them in a
subspace) which requires significantly less time.

More specific details are presented in Chapter 4, where, also, experiments
and results are shown.
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4

The Adaptive Smoothed Aggregation Spec-
tral AMG Method (aSA AMGe): Implemen-
tation Details and Results

This chapter is devoted to the method of our main interest, namely the
adaptive version of the method from [10] in the case of changing PDE coeffi-
cient, described in the previous chapter. Here, we describe our implementation
in details and show results from the numerical experiments. We finish with
some conclusions.

More specifically, in Section 4.1 we consider the procedure of building the
agglomerated elements, the corresponding aggregates and local stiffness matri-
ces. They are necessary prerequisites for producing the interpolation operator
and hence for the overall TG algorithm we employ. Section 4.2 contains im-
plementation details related to the interpolation matrix and the smoother we
use in the TG algorithm. In Section 4.3 we illustrate the SA-AMGe method
with numerical results without involving adaptation. Section 4.4 describes the
adaptation procedure and its implementation. In Section 4.5, we present our
main numerical results for the adaptive SA-AMGe method. Section 4.6 pro-
vides some concluding words including considerations related to improvements
and further development of the method.

4.1 Agglomerated Elements, Aggregates, and Local Stiffness
Matrices

The procedure of building the interpolation operator (and, thus, the coarse
space) relies on the presence of appropriate partitioning of the domain into
sets of fine-grid elements – agglomerated elements. It also requires the corre-
sponding aggregates and local stiffness matrices. The purpose of this section
is to treat this topic. We review here the definition of agglomerated elements
and provide some algorithms to construct them. Next, we consider the related
notion of aggregates and we finish the section by inspecting the assembly of
the local stiffness matrices.

We begin first with the more general notion of relation tables.
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4.1.1 Relation Tables

The topology of the mesh can be described by means of incidence rela-
tions. Here we consider these relations and a way they can be represented
(implemented) in practice. The presentation follows [32, 31].

Suppose we have some numbering of the elements, vertices, edges, faces,
etc. of the given fine mesh. It is quite natural to have them in practice,
i.e., many mesh generators do provide this information. The edges in 2D
have the same role as the faces in 3D, thus we are going to use the word
“face” in both cases and our considerations will be applicable in both cases. A
typical relation in the mesh is “element i has vertex j”. This relation can be
represented as a boolean matrix with number of rows equal to the number of
elements and number of columns equal to the number of vertices. Thus, the
relation “element i has vertex j” is expressed by a nonzero entry at position
(i, j) of the matrix. These matrices are called relation tables. They are sparse
and thus can be stored and worked with using the popular CSR format. The
relation described above is “element_vertex”. We can easily get the relation
“vertex_element”, representing the relation “vertex i belongs to element j”, by
transposing “element_vertex”. Similarly other relations can be produced, like:
“element_face” and the respective “face_element”, etc.

We can also use other standard matrix operations on these tables. Namely,
we can compute the product

“element_element” = “element_face” × “face_element”.

It represents the symmetric relation “element i and element j have a common
face”. That is, it is precisely the incidence matrix of the dual graph of the fine
mesh (see Section 2.5).

Similarly, we can compute

“vertex_vertex” = “vertex_element” × “element_vertex” ,

which represents the symmetric relation “vertex i and vertex j belong to a
common element”. That is, it is precisely the incidence matrix of the nodal
graph of the fine mesh. It also has the same sparsity structure as the global
stiffness and mass matrices (we remind that for us dofs and vertices coincide
since we use linear finite elements).

There is one more application of the relation tables. They can be used to
define a local numbering of the mesh components and, also, mappings between
local and global numberings. Consider the relation table “element_vertex” as
an example. Taking the i-th row of this table and considering the order in
which the vertices of element i appear in the row, we can assign local numbers
to these vertices (e.g., in the 2D case when triangles are used the numbers will
be from 1 to 3). If we want to find the global number of a vertex belonging
to element i that has a local number k, then we look at the i-th row, find the
k-th nonzero element, and its (global) column index gives its global number.
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Conversely, if we take the global number j of a vertex, then we can look at the
j-th row of the table “vertex_element”, find all the elements it belongs to, and
for every single element i we can look at the i-th row of “element_vertex”, and
find the local number (based on its order) of the vertex corresponding to the
j-th column.

Remark 4.1. Instead of using the order in which the vertices appear in the row
it is more practical to use the order in which they appear in the column index
array of the CSR representation of the table, which may not coincide with the
order they appear in the row. The idea is still the same as above.

Remark 4.2. The finite element package MFEM has a suitable CSR format
implementation specially adjusted for representing relation tables, since it has
a tool-set for working with meshes. It also generates several relation tables,
e.g., it generates “element_face” and “element_element”. Many relations are
available but not all of them represented in a table form. If we need for example
“element_vertex” we can still build it from the information present and we can
even keep the ordering, i.e., the local numbering.

4.1.2 Agglomerated Elements

The first thing we need to obtain when we implement the method of our
interest, after we have the mesh and the linear system, is the set of agglomerated
elements. We describe next the procedure we use.

Definition 4.3. We define an agglomerated element (AE) simply as a (con-
nected) partition of the dual graph of the fine mesh (see Section 2.5). Actually,
we are going to use the words “agglomerated element” and “partition” inter-
changeably.

Having the “element_element” table we practically have the dual graph
and we can use the graph partitioner METIS to generate a partitioning and,
thus, obtain the agglomerated elements. The API (Application Programming
Interface) of METIS expects as input the adjacency structure of the graph
represented in CSR format. That is, it can take the table “element_element”
and produce the partitioning. The output is a relation between the elements
and the partitions they belong to. It is not represented in a table form. Instead,
the output is an array s.t. the value of the cell with index i in the array is the
number of the partition to which element i (of the fine mesh) belongs. Thus,
a numbering of the agglomerated elements is introduced and also the mapping
“element i belongs to agglomerated element j (the value of the i-th cell of the
array)” is given. That is, effectively, we have the relation “element_AE”.

Remark 4.4. Actually, the call to the API of METIS that partitions the dual
graph of the fine mesh is part of the MFEM library. In MFEM it is used for
partitioning the mesh so that parallel algorithms can be used, i.e., to distribute
the load among many processors. A few modifications of the compiler options
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allow us to use the code for our purposes. It has the feature to check if some of
the resulting partitions turn out to be empty. In that case it splits the largest
partitions into two parts so that the desired number of (non-empty) partitions
are produced. Although we may consider the desired number of partitions as
an upper bound and, thus, we may discard the empty partitions and work with
the number of non-empty partitions given by METIS, we decided to use the
available procedure in MFEM.

Since the array produced by METIS resembles the table “element_AE” we
easily generate the table “AE_element”. As a result we have a local numbering
of the elements inside an AE. Having “element_vertex” we compute

“AE_vertex” = “AE_element” × “element_vertex”,

which represents the relation “agglomerated element i has an element which
has vertex j”. Thus, we have a local numbering of the vertices inside an AE.
We note that in terms of vertices the agglomerated elements are overlapping.

A sample partitioning of the irregular mesh into 10 agglomerated elements
is shown in fig. 4.1. The smallest agglomerated element has 625 elements and
the largest has 658 elements which is fairly enough around the mean 640.

Remark 4.5. The version of METIS we use may return non-connected parti-
tions (see Section 2.5).

4.1.3 Aggregates

The second thing after obtaining the agglomerated elements is to construct
the aggregates. We present here the procedure we use and, also, make few ad-
ditional considerations regarding some nonstandard situations that may occur
in the implementation and discuss some possible improvements.

Aggregates are disjoint sets of dofs (vertices, in our case) that cover the
whole set of dofs. We want our aggregates to be subordinate to the agglom-
erated elements. That is, there is one-to-one correspondence between the ag-
glomerated elements and the aggregates in a way that for each agglomerated
element T ∈ TH there is precisely one aggregate AT s.t. it contains only ver-
tices belonging to elements in T . We may consider that we have two types
of vertices – those belonging to only one agglomerated element and those ly-
ing on the boundary (interface) between two or more agglomerated elements.
Surely, the vertices lying entirely in T become part of AT so we consider them
distributed. The vertices lying on an interface may be part of any of the aggre-
gates corresponding to the agglomerated elements having this interface. We
have to distribute them somehow.

[10] recommends to assign the interface vertices to the aggregate with the
largest value of the PDE coefficient (assuming we have access to the coefficient).
In our case, we have many realizations of the coefficient and we want to build
the agglomerated elements and respective aggregates once for all. Thus, we
should either use some information regarding the distribution of the coefficient
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(a) Mesh not displayed (b) Mesh displayed

Figure 4.1: 10 AEs on the irregular mesh with 6400 elements and 3321 vertices.

(a) Mesh not displayed (b) Mesh displayed

Figure 4.2: 10 aggregates on the irregular mesh with 6400 elements and 3321
vertices.
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or we may try to distribute the vertices as uniformly as we can. We choose the
second approach. We use a greedy heuristics to achieve that. That is, we loop
over all the interface vertices, for each vertex we consider all the aggregates
that compete to own it and we assign the vertex to an aggregate with a minimal
current number of vertices. Thus, we construct the desired aggregates and the
relation table “aggregate_vertex” which also provides us a local numbering of
the vertices in an aggregate.

As an example, in fig. 4.2 we show 10 aggregates covering the given irregular
mesh. These are the aggregates corresponding to the agglomerated elements
seen in fig. 4.1. The smallest aggregate has 330 vertices and the largest one
has 334 vertices which is fairly close to the mean 332.

Remark 4.6. An aggregate may turn out to be disconnected (in the sense of the
nodal graph) even when its corresponding agglomerated element is connected
(in the sense of the dual graph).

Empty Aggregates

Some considerations related to the case when the above algorithm returns
empty aggregates are in order. At the end, we discuss possible improvements
of the aggregation procedure.

The greedy methods have well known disadvantages due to the use of local
criteria of choice. It may return a solution that is far from optimal and the
result, obviously, depends quite a lot on the order in which the interface vertices
are visited. The largest issue is that it may return empty aggregates even in
the cases when the number of aggregates is not very close to the number
of vertices (naturally, we assume the number of aggregates is less than the
number of vertices). Currently, we have not implemented a solution to this
issue; we consider it quite unlikely in the case when we use aggressive enough
coarsening (large agglomerated elements). The latter is appropriate in our
two-level setting. Thus, if it happens to have one or more empty aggregates
the current program aborts (i.e., it cannot continue). Still, we are giving some
considerations related to this issue and its resolution.

One option we suggest is as follows. If we end up with empty aggregates
we cannot simply discard them, since we would also need to discard the corre-
sponding agglomerated elements and redistribute their elements to the neigh-
boring AEs. This is too complicated and confusing so we do not consider it.
There is another somewhat easier way which is still not very elegant. We may
consider the undirected graph with nodes the aggregates where two aggregates
are adjacent if they (used to) compete for vertices (in most cases this will be
a planar graph). We want to “steal” vertices to add to an empty aggregate
from another aggregate s.t. stealing will not make it empty, e.g., it has to have
more than one vertex. We simply use a pathfinding algorithm in the graph
(e.g., depth-first search or breadth-first search) and find a path between the
empty aggregate and an appropriate aggregate we can “steal” from. Then, in
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a “domino-like” manner we transfer one or more (if possible) vertices to the
empty aggregate. Thus, no aggregate on the way changes its number of vertices
except for the empty one and the one we “steal” from.

The above solution is far from elegant. We may look at the problem from
another point of view.

Definition 4.7 (see [25]). Consider a given set U and a family F of subsets
of U s.t. this family contains at least one subfamily (called packing) C ⊆ F of
disjoint sets which covers the set U . We define the problem of (maximal) set
packing as the problem of finding a packing C s.t. it maximizes the cardinality
|C|.

In general, this is a NP-complete problem (see [20, 25]). If we identify U
with Nh and F is the set of all possible aggregates corresponding to the set of
agglomerated elements we have, then, with some reservation, we may consider
the problem of building the aggregates as an instance of a set packing problem.
The NP-completeness directs us to reformulate the problem as another NP-
complete problem for which we have a tool that offers a (approximate) solution.
Namely, it directs us to reformulate the problem in terms of graph partitioning
and use METIS. Actually, graph partitioning is a much better way to look at
the problem when we consider the goals that are posed for set packing and
graph partitioning. That is, the goal of set packing is to maximize |C| which
for us means nothing since it is always na (the number of AEs), while one
of the goals of graph partitioning is the partitions to be more or less equal
which is what we want. Since METIS is a very sophisticated tool that uses
multilevel heuristics which implies a global criterion, compared to the local
criterion in the greedy algorithm, we may expect a much more balanced (and
thus closer to the optimum) solution of the problem of building the aggregates.
Of course, it still might be possible to get empty aggregates (if METIS outputs
empty partitions), but, considering the better heuristics, it should be much
more unlikely and mainly in case the number of aggregates is too close to the
number of vertices. Thus, this is one more option to be exploited to improve
the method of building aggregates.

4.1.4 Stiffness Matrices for Local Problems

We now consider the procedure of building the local stiffness matrices cor-
responding to the agglomerated elements. We present an efficient implemen-
tation that uses both the element matrices and the assembled global matrix.

For each T ∈ TH we need to build the corresponding nT ×nT local stiffness
matrix AT =

[
aTij

]nT
i,j=1

, where nT is the number of dofs in T . In general,

AT is sparse symmetric positive semi-definite. We assume that the global
stiffness matrix A = [aij ]

n
i,j=1 has the essential boundary conditions imposed

and they are imposed only globally, i.e., the essential boundary conditions are
not imposed on the element stiffness matrices of the elements owning dofs that
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are on ΓD. This is what MFEM provides. We build AT as a sparse matrix
(i.e., in CSR format) component by component, i.e., we compute the value of
each aTij (due to the symmetry it equals the value of aTji) in a way that we get
a local stiffness matrix which has the essential boundary conditions imposed
in case the agglomerated element owns dofs that are on ΓD.

Assembling each component aTij of AT from the element stiffness matrices of
the elements in T that share the dofs (i.e., the ones that contribute to the value
of aTij) with local (for T ) numbers i and j may be inefficient, since these ele-
ments may be too many, especially in 3D. But the majority of the values of the
components are already assembled in A and we use those values without assem-
bling them again. The relations “AE_vertex”, “vertex_AE”, “vertex_element”
and the global stiffness matrix A (which also acts as “vertex_vertex”) are suf-
ficient for all numberings and mappings between numberings that are used for
assembling AT . The principle of using the entries of A is simple. Namely, if at
least one of the dofs i and j is entirely inside T (i.e., not on ∂T ) or at least one
of them is on ΓD then we set aTij = apq, where p and q are the global numbers
corresponding respectively to i and j. Surely, it includes the case of i = j.
The value of aTij is explicitly assembled from element stiffness matrices only in
the case when both i and j (including the case of i = j) lie on ∂T and none of
them is on ΓD.

Remark 4.8. In reality, considering the adjacency structure of the nodal graph
presented by A (with imposed essential boundary conditions) the dofs on ΓD

are either connected to the neighboring dofs by zero values or they are not
connected to any other dof except themselves (when these zero values are
excluded from the CSR representation of A). Thus, aTij , when i 6= j and at
least one of i and j is on ΓD, is either zero (in the former case) or not considered
at all (in the latter case, since i and j are not adjacent in the presented nodal
graph) and this explicitly (in the former case) or implicitly (in the latter case)
leaves aTij equal to zero in the CSR representation of AT . Having in mind
that aTii is copied from A when i is on ΓD we get that the essential boundary
conditions are imposed on AT when T owns dofs on ΓD.

Remark 4.9. The implementation is a bit more general allowing the use of A
which does not have the essential boundary conditions imposed and building
local stiffness matrices also without the essential boundary conditions being
imposed when the agglomerated element owns dofs that are on ΓD.

4.2 Interpolation Matrix and Smoother

In this section we consider first the interpolation matrix P . Next, we treat
the smoother M .

4.2.1 Interpolation Matrix

We present here a few details about the interpolation matrix. The general
construction is found in Section 3.5.3.1.
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As already said, we solve for each T ∈ TH a generalized eigenvalue problem
of the form:

ATqr = λrDTqr, r = 1, . . . , nT . (4.1)

Then we select the first mT ≤ nT eigenvectors corresponding to the lower part
of the spectrum. Having λmax = λnT , based on a given tolerance θ ∈ (0, 1]

(a parameter that we choose) we determine mT . Namely, we choose mT s.t.
λr ≤ θλmax for r = 1, . . . ,mT and λr > θλmax for r = (mT + 1), . . . , nT .

The implementation works with any s.p.d. matrix in place of DT in (4.1).
There are several ways (that we have implemented) to compute the desired
eigenvectors. We can compute all nT eigenvectors and eigenvalues using the
LAPACK routine DSYGV and thus knowing λmax we take the desired subset of
vectors; alternatively, we can compute the maximal eigenvalue using ARPACK
and ARPACK++, then using the LAPACK routine DSYGVX we compute only
the desired eigenvectors. These LAPACK routines return DT -orthonormal
eigenvectors (or orthonormal w.r.t. any s.p.d. matrix in place of DT ) which is
a property we desire for the adaptation (see Section 3.5.3.2). LAPACK expects
the matrices represented in a format for dense matrices, i.e., we convert the
CSR-represented matrices into dense ones.

We have also implement another approach which is the one actually used
for our experiments (to follow). Namely, in place of DT in (4.1) we use the
weighted `1-smoother corresponding to AT denoted by DT . That is, we solve

ATqr = λrDTqr, r = 1, . . . , nT ,

and knowing that λmax is at most 1 we take mT s.t. λr ≤ θ for r = 1, . . . ,mT

and λr > θ for r = (mT + 1), . . . , nT . Thus, we can directly apply DSYGVX.
The estimates in Section 3.5.3.1 still hold when we use DT instead of DT due
to their spectral equivalence.

Remark 4.10. If using the method above determines mT to be 0, we take
mT = 1, i.e., we always choose at least one eigenvector.

Remark 4.11. The implementation allows the use of DT , DT , or any other
s.p.d. matrix.

The rest of the procedure is as described in Section 3.5.3.1. The only detail
worth noting is that when restricting the eigenvectors to the aggregate AT we
also build a simple mapping from the indices of the restricted vectors (which
correspond to the dofs in the aggregate) to the global numbers of the dofs
which points out to the exact row of the global tentative interpolation matrix
P where we have to place each row of the local tentative interpolation matrix
PA. Thus, we easily assemble P in CSR format, since each of its rows it has
only elements coming from exactly one local tentative interpolation matrix.

As we have already said, instead of smoothing P by the polynomial smoother
shown in Section 3.5.3.1, we have chosen the simple option P =

(
I −D−1A

)
P ,

where D, as before, is the weighted `1-smoother corresponding to A.
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4.2.2 Implementation of the polynomial smoother

This section describes our implementation of the polynomial smoother in-
troduced in Section 3.5.3.1, “The choice of M , D and the upper bound b”.

We have, for the given polynomial pν (see Section 3.5.3.1)

M−1 =
[
I − pν

(
D−1A

)]
A−1.

Since pν(0) = 1, we have the factorization

pν(t) =

3ν+1∏
j=1

(
1− t

τj

)
,

where τ1, . . . , τ3ν+1 are the roots of pν(t).
We have the following algorithm which implements the actions of M−1.

Algorithm 4.12. Given an iterate x0 we compute x3ν+1 = x0+M−1 (b−Ax0)

in the following steps:

for j = 1, . . . , (3ν + 1) compute xj from

xj = xj−1 +
1

τj
D−1 (b−Axj−1) .

That is, the algorithm involves 3ν+1 sweeps of an iteration of Jacobi type.
To verify Algorithm 4.12, we proceed as follows. Consider the error at step

j,

A−1b− xj = A−1b− xj−1 −
1

τj
D−1 (b−Axj−1)

=
(
A−1b− xj−1

)
− 1

τj
D−1A

(
A−1b− xj−1

)
=

(
I − 1

τj
D−1A

)(
A−1b− xj−1

)
.

Thus by recursion on j, we obtain

A−1b− x3ν+1 =
3ν+1∏
j=1

(
I − 1

τj
D−1A

)
︸ ︷︷ ︸

pν(D−1A)

(
A−1b− x0

)
.

Thus,

x3ν+1 =
[
I − pν

(
D−1A

)]
A−1b + pν

(
D−1A

)
x0

= M−1b−
[
I − pν

(
D−1A

)]
A−1Ax0 + x0

= x0 +M−1 (b−Ax0) .

The roots of pν(t) are (see [9])

cos2

(
j

2ν + 1
π

)
, for j = 0, . . . , 2ν,

sin2

(
j

2ν + 1
π

)
, for j = 1, . . . , ν,
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which are precisely the extrema of T2ν+1

(√
t
)
and the roots of T2ν+1(

√
t)√

t
.

4.3 Numerical Results without Adaptation

We are now ready to present results from numerical experiments with our
implementation of the SA spectral AMGe method. The results here are only
for the method without involving adaptation. We first describe the setting of
the experiments and then we give the actual results.

4.3.1 Preliminaries

We first outline the setting of the experiments (tolerances used, norms in
which we measure convergence and errors, etc.)

Unless we are given the exact solution of Ax = b or we solve Ax = 0, we
generally do not have access to the (algebraic) error. Using the fact that the
error solves the defect equation, i.e., Aei = ri, we get ‖ei‖A = ‖ri‖A−1 . We
approximate ‖ri‖A−1 by ‖ri‖B−1

TG
, since B−1

TG is a good approximation to A−1

(for a well–convergent TG-method). Actually, the norms ‖.‖A−1 and ‖.‖B−1
TG

are
equivalent if BTG is properly chosen. In the computation we use the relation
B−1
TGri = xi+1 − xi.
We apply the method to Ae = 0 with a random initial iterate aiming to

observe the error behavior, since in this case we have access to the error. Con-
sider two given tolerances: the relative tolerance tr and the absolute tolerance
ta. The stopping criteria is: stop after step m, i.e., em is the last iterate, if
m is the smallest integer s.t. ‖em‖A‖e0‖A ≤ tr or ‖em‖A ≤ ta hold. We use the

notation ρ̃TG = ‖em‖A
‖em−1‖A (see Section 2.2.3).

In case we solve Ax = b the stopping criteria is: stop after step m, i.e.,

xm is the last iterate, if m is the smallest integer s.t. (B−1
TGrm−1,rm−1)
(B−1

TGr0,r0)
≤ tr or(

B−1
TGrm−1, rm−1

)
≤ ta hold, where (·, ·) is the Euclidean inner product.

Let (1.1) (with a fixed coefficient k) have an exact solution u. Also, let the
solution of the linear system Av = b be v, that gives rise to the finite element
approximation vh to the exact solution u. Let u be the vector with the values
of u at the mesh nodes, i.e., u is the coefficient vector of Iu which is the linear
interpolant of u at the nodes of the mesh (we assume that the solution u is
smooth enough). Then, ‖u−v‖A =

√
ak (Iu− vh, Iu− vh) and, thus, it is not

the real energy norm of the error (the difference between our approximation
and the exact solution) which is

√
ak (u− vh, u− vh). Still, we are going to

use ‖u−v‖A to measure the error and check for the presence of approximation
as we decrease h.

For the experiments we use tr = 10−12, ta = 0, θ = 0.01, and ε =

10−8, where ε is the threshold used within the SVD (see Section 2.3) and
the Gram-Schmidt orthogonalization (see Section 2.4). The coarse solver uses
the Cholesky method implemented by the LAPACK routine DPOSV (which, as
expected, requires a dense matrix as input).
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4.3.2 Results

We present here some results from experiments with our implementation
of the TG SA spectral AMGe method.

Approximation

We show that the numerical solutions have approximation, i.e., the error
decreases as we decrease h.

We consider (1.1) with fixed k = 1, g = 0, ΓD = ∂Ω, ΓN = ∅, and
f = 2x(1 − x) + 2y(1 − y). We use the regular mesh. The r.h.s. f is chosen
such that the exact solution is u = x(1 − x)y(1 − y). We measure ‖u − v‖A
where Av = b is assembled and solved on a sequence of meshes. We use ten
(10) AEs, and ν = 6 (i.e., 3ν+1 = 19) and a zero initial guess. The well-known
estimate of the energy norm of the error is O(h). The results are presented in
table 4.1. Figure 4.3 compares the estimate O(h) and the error we compute.
As we see the computed error is actually better than the expected O(h) (i.e.,
some superconvergence phenomenon is observed). We can also see that the
number of iterations, m, is fairly small and changes very little as we increase
the number of fine-grid dofs even though we keep the same ν (note however
the increase of the number of coarse dofs).

For the case corresponding to the last row of table 4.1 we show in fig. 4.4 a
sample distribution of the eigenvalues coming from the generalized eigenvalue
problem for a local stiffness matrix. They are plotted in a logarithmic scale to
show their distribution according to their order of magnitude.

Coefficient Jumps

We show experiments illustrating the behavior of the method in the pres-
ence of large jumps in the PDE coefficient k.

We consider g = 0, ΓD = ΓE∪ΓW , ΓN = ΓN ∪ΓS (see Section 1.4.5), ν = 6

(i.e., 3ν+1 = 19), 200 AEs and we use the irregular mesh with 102400 elements
and 51681 vertices. Figure 4.5 shows a sample checkerboard-like partitioning
of the fine-grid elements (which changes slightly when the mesh is coarser or
finer). We set k = 1 on the gray parts and k = 10c on the white parts, and
vary the contrast c; c = −12,−9,−6,−3, 0, 3, 6, 9, 12. We apply the method
to Ae = 0 with random initial iterates. The results are presented in table 4.2.
We can see that the convergence factor is fairly insensitive to the contrast c.

We finish this paragraph by showing in fig. 4.6 a sample distribution of the
eigenvalues of a local stiffness matrix when c = 12 and when 200 AEs are used.

Smooth Errors and the Coarse Space

We present examples that illustrate the behavior of the algebraically smooth
error and discuss the quality of the constructed coarse space based on the pa-
rameters of the method most notably the construction of aggregates and the
effect of smoothing the tentative interpolant.
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h |Nh| |Th| # coarse dofs m
(
B−1
TGrm, rm

)
eh = ‖u− vm‖A

0.176777 81 128 10 4 1.6145× 10−20 0.00190437
0.0883883 289 512 10 4 1.96677× 10−20 0.000485122
0.0441942 1089 2048 12 8 6.26752× 10−18 0.000121859
0.0220971 4225 8192 39 8 1.41627× 10−16 3.05057× 10−5

0.0110485 16641 32768 124 8 9.9065× 10−17 7.63065× 10−6

Table 4.1: The error on a sequence of regular meshes using k = 1, ν = 6, and
10 AEs.

log2(h)

log2(eh)

Figure 4.3: log2 of h and eh.

10−5

0.0001

0.001

0.01

0.1

1

10
Eigenvalues

Figure 4.4: The distribution in a logarithmic scale of the eigenvalues of a local
stiffness matrix on the regular mesh with 32768 elements and 16641 vertices when
k = 1.
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Figure 4.5: The distribution of the values of the coefficient on the irregular
mesh with 25600 elements and 13041 vertices.

c # coarse dofs m ρ̃TG ‖em‖A
-12 697 42 0.618 7.92645× 10−11

-9 697 43 0.620 6.42419× 10−11

-6 697 43 0.620 7.66067× 10−11

-3 696 41 0.616 6.47778× 10−11

0 638 27 0.487 1.19774× 10−10

3 689 41 0.630 2.31201× 10−9

6 689 53 0.725 7.68107× 10−8

9 689 60 0.724 2.3428× 10−6

12 689 60 0.724 6.83945× 10−5

Table 4.2: The convergence and the coefficient jumps on the irregular mesh
with 102400 elements and 51681 vertices using 200 AEs.
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10−16
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10−12

10−10
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0.0001

0.01

1

100
Eigenvalues

Figure 4.6: The distribution in a logarithmic scale of the eigenvalues of a local
stiffness matrix on the irregular mesh with 102400 elements and 51681 vertices
using 200 AEs and c = 12.

(a) The initial error (b) The error after 1 sweep of M

(c) The error after 5 sweeps of M (d) The error after 200 sweeps of M

Figure 4.7: The smoothing effect of the smoother M on the error with ν = 6,
c = 6 and using the irregular mesh with 102400 elements and 51681 vertices.
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θ S ν # coarse dofs |Ac| m ρ̃TG ‖em‖A
0.01 I −D−1A 6 774 14320 2840 0.995 8.99665× 10−8

0.01 I −D−1A 12 774 14320 2729 0.995 9.08379× 10−8

0.01 sν
(
D−1A

)
6 774 29448 297 0.949 8.83595× 10−8

0.01 sν
(
D−1A

)
12 774 55746 54 0.766 7.66148× 10−8

0.03 I −D−1A 6 1679 66715 793 0.983 9.07097× 10−8

0.03 I −D−1A 12 1679 66715 829 0.983 9.09787× 10−8

0.03 sν
(
D−1A

)
6 1679 137909 84 0.825 7.89149× 10−8

0.03 sν
(
D−1A

)
12 1679 259683 25 0.518 8.67915× 10−8

0.05 I −D−1A 6 2530 150862 111 0.887 8.17631× 10−8

0.05 I −D−1A 12 2530 150862 116 0.886 9.00872× 10−8

0.05 sν
(
D−1A

)
6 2530 312174 11 0.210 6.45282× 10−8

0.05 sν
(
D−1A

)
12 2530 587610 7 0.086 3.60355× 10−8

0.09 I −D−1A 6 4175 407891 52 0.772 8.72622× 10−8

0.09 I −D−1A 12 4175 407891 50 0.771 8.35374× 10−8

0.09 sν
(
D−1A

)
6 4175 843881 7 0.084 1.21693× 10−8

0.09 sν
(
D−1A

)
12 4175 1586143 5 0.021 6.14306× 10−9

0.01, 0.09 I −D−1A 6 1133 52291 79 0.784 7.35024× 10−8

0.01, 0.09 sν
(
D−1A

)
6 1133 100885 11 0.148 5.57028× 10−8

Table 4.3: The convergence on the irregular mesh with 102400 elements and
51681 vertices using 300 AEs, c = 6 and varying ν, S, and θ.

(a) The “bad” vector after 50 iterations
using S = I −D−1A

(b) The “bad” vector after 10 iterations
using S = sν

(
D−1A

)

(c) The solution (d) The solution

Figure 4.8: “Bad” vectors on the irregular mesh with 102400 elements and 51681
vertices using 300 AEs, c = 6, and ν = 6; and the solution of the equation.
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S ν # coarse dofs |Ac| m ρ̃TG ‖em‖A
I −D−1A 6 689 16473 53 0.725 8.41505× 10−8

I −D−1A 12 689 16473 46 0.670 7.84846× 10−8

sν
(
D−1A

)
6 689 29177 10 0.117 1.18052× 10−8

sν
(
D−1A

)
12 689 51995 6 0.026 2.16641× 10−8

Table 4.4: The convergence on the irregular mesh with 102400 elements and
51681 vertices using 200 AEs, c = 6, θ = 0.01 and varying ν and S.

θ S ν # coarse dofs |Ac| m ρ̃TG ‖em‖A
0.01 I −D−1A 6 584 22638 11776 0.999 9.06992× 10−8

0.01 I −D−1A 12 584 22638 12688 0.999 9.09531× 10−8

0.01 sν
(
D−1A

)
6 584 33314 482 0.965 8.7672× 10−8

0.01 sν
(
D−1A

)
12 584 51148 142 0.887 8.56982× 10−8

0.0103 I −D−1A 6 595 23441 193 0.928 9.03082× 10−8

0.0103 I −D−1A 12 595 23441 200 0.924 8.77889× 10−8

0.0103 sν
(
D−1A

)
6 595 34435 51 0.764 7.11794× 10−8

0.0103 sν
(
D−1A

)
12 595 52769 15 0.300 3.24926× 10−8

Table 4.5: The convergence on the irregular mesh with 102400 elements and
51681 vertices using 100 AEs, c = 6 and varying ν, S, and θ.

S ν # coarse dofs |Ac| m ρ̃TG ‖em‖A
I −D−1A 6 580 22514 23 0.489 7.86781× 10−8

I −D−1A 12 580 22514 21 0.392 4.26719× 10−8

sν
(
D−1A

)
6 580 32196 9 0.144 6.30571× 10−8

sν
(
D−1A

)
12 580 50822 6 0.019 2.98351× 10−8

Table 4.6: The convergence on the irregular mesh with 102400 elements and
51681 vertices using alternative 100 AEs, c = 6, θ = 0.01 and varying ν and S.

S ν # coarse dofs |Ac| m ρ̃TG ‖em‖A
I −D−1A 6 672 15624 4619 0.997 9.08026× 10−8

I −D−1A 12 672 15624 5006 0.997 9.0812× 10−8

sν
(
D−1A

)
6 672 28440 365 0.955 8.93305× 10−8

sν
(
D−1A

)
12 672 49320 83 0.822 7.58487× 10−8

Table 4.7: The convergence on the irregular mesh with 102400 elements and
51681 vertices using alternative 200 AEs, c = 6, θ = 0.01 and varying ν and S.

θ S ν # coarse dofs |Ac| m ρ̃TG ‖em‖A
0.01 I −D−1A 6 689 16209 1353 0.989 9.08763× 10−8

0.01 I −D−1A 12 689 16209 1356 0.989 9.10478× 10−8

0.01 sν
(
D−1A

)
6 689 29071 95 0.826 7.76864× 10−8

0.01 sν
(
D−1A

)
12 689 51903 25 0.484 8.10407× 10−8

0.015 I −D−1A 6 896 27322 759 0.978 8.95747× 10−8

0.015 I −D−1A 12 896 27322 680 0.978 8.99256× 10−8

0.015 sν
(
D−1A

)
6 896 48888 54 0.735 6.93061× 10−8

0.015 sν
(
D−1A

)
12 896 87226 15 0.347 8.94873× 10−8

Table 4.8: The convergence on the irregular mesh with 102400 elements and
51681 vertices using 200 AEs (with alternative aggregates), c = 6 and varying ν,
S, and θ.
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|Nh| |Th| # coarse dofs OC m ρ̃TG ‖em‖A
3321 6400 227 1.13271 60 0.703 2.11807× 10−8

13041 25600 302 1.04099 73 0.743 4.07153× 10−8

51681 102400 665 1.04493 50 0.697 6.95167× 10−8

205761 409600 1899 1.08678 36 0.617 1.13402× 10−7

Table 4.9: The convergence on a sequence of irregular meshes using 200 AEs,
ν = 6, and c = 6.

Figure 4.7 shows how the error looks after applying the smoother M in the
case when c = 6. We see that the algebraically smooth error is not uniformly
geometrically smooth; it follows the pattern of the jumps of the coefficient.

Consider the test problem with f = 1, g = 0, ΓD = ΓE∪ΓW , ΓN = ΓN∪ΓS ,
c = 6 and use the irregular mesh with 102400 elements and 51681 vertices. Us-
ing the notation P = SP for the smoothed interpolant, we present the results
in tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8, when we vary the solver parameters. In
the tables, |Ac| denotes the number of nonzero elements of Ac (for comparison
|A| = 353179). We observe another quite interesting phenomenon. We explain
first the last two rows of table 4.3. When we run the iteration process with
ν = 6 for a few iterations, we get the vectors in figs. 4.8a and 4.8b which we call
“bad”, since the convergence factor is bad then (see Section 2.2.4). In figs. 4.8c
and 4.8d we can see the actual solution and we also can see which part of the
solution corresponds to the peak in the “bad” vectors. We set θ = 0.09 for
each T ∈ TH s.t. the average of the coordinates of the dofs in T is in the set
{(x, y) : 0 ≤ x ≤ 0.35, 0.75 ≤ y ≤ 1} ⊂ Ω and we set θ = 0.01 for the rest, i.e.,
we increase the tolerance roughly around the peak in the “bad” vectors. Thus,
we get the results in the last two rows of table 4.3.

Tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 show that in almost all cases when we
use S = I −D−1A increasing ν (and thus the degree of the polynomial pν(t)

used for the smoother M) brings little or no improvement to the convergence
factor. Thus, we may conclude that the source of good or bad convergence (in
our experiments here) is the quality of the coarse space. Quite naturally, larger
coarse space does not necessary mean better coarse space. Tables 4.5 and 4.6
contain results when two different partitionings1 (both of them with 100 AEs)
are used. We can see a serious difference in the results. The situation is the
same with tables 4.4 and 4.7. The used alternative partitionings are almost
the same as the original ones but still the results are quite different. Actually,
if we compare tables 4.4 and 4.8, where the same agglomerated elements are
used and the change is only in the corresponding aggregates, then we see that
the results are also quite different. Any change to the agglomerated elements
results in different aggregates. Particularly, the change corresponding to the
results in table 4.8 is as simple as reversing the order in which the interface

1All the partitionings that we use here have connected (in the sense of the dual graph of
the fine mesh) partitions.
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dofs are visited during the construction of the aggregates using the greedy
approach (see Section 4.1.3). It is natural for the agglomerated elements and
the aggregates to have impact on the coarse space, since they are major building
blocks.

As the theory shows (supported also by tables 4.3 to 4.8) both the interpo-
lation smoother S and the eigenvectors of the local stiffness matrices determine
the quality of the coarse space. We can also see that the interpolation smoother
increases the number of nonzero elements of Ac. This is due to the fact that
smoothing the coarse basis leads to enlarged support of the coarse basis func-
tions and thus to decreased sparsity of Ac. We see that in the cases when we use
S = I−D−1A (and increasing ν, the number of smoothing steps, (almost) does
not improve the convergence) the corresponding results with S = sν

(
D−1A

)
(giving rise to a better smoothed interpolant) show noticeable improvement
when ν is increased. Thus, we may conclude that the source is the improved
quality of the coarse space due to the better energy stability of the smoothed
interpolant. The situation is similar when we increase θ. As already said in
Section 3.5.3.1, we should choose mT , for each T ∈ TH , large enough. This ac-
tually means (see [10]) that we should choose mT s.t. λmT+1 scales with

(
h
H

)2.
Only the combination of appropriate mT , ν and interpolation smoother S (as
the theory shows and the results in tables 4.3 to 4.8 support) leads to stable
and acceptable convergence in all cases (including, stable w.r.t. the particular
choice of agglomerated elements and aggregates). Often we get good results
without too much tuning of the parameters and one may think that the con-
ditions required by the theory for deducting the optimal spectral estimate are
too pessimistic but at the same time in extreme cases, like our examples here,
the convergence may be bad and may improve dramatically when appropriate
parameters are selected. Thus, the requirements concerning these parameters
and posed by the theory are quite sharp if we consider a case that tends to
behave like “the worst case”. An example of a case when the results are consid-
erably stable w.r.t. the choice of the parameters is when we set ΓD = ∂Ω and
ΓN = ∅ (θ = 0.01, ν = 6, and 300 AEs are used), then we obtain ρ̃TG = 0.779

with S = I − D−1A, and ρ̃TG = 0.231 when S = sν
(
D−1A

)
(compare with

table 4.3). Particularly, in this case the “bad” vectors in figs. 4.8a and 4.8b
cease to exist.

We saw that we may end up with some deficiency in the approximation
properties of the coarse space depending on the parameters we choose. We
also saw that appropriate parameters may easily and dramatically improve
the convergence. The adaptation (see Sections 3.5.3.2 and 4.4) is another way
to improve the coarse space and thus overcome the deficiency of the method.
Currently, we consider the fixed choices S = I −D−1A and θ = 0.01.
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Sensitivity to h

Here we investigate the dependence of the convergence factor when the
method is applied on a sequence of fine meshes.

We introduce the following notion.

Definition 4.13. The quantity: |Ac|+|A||A| is referred to as operator complexity
(OC)

Consider the test problem with g = 0, ΓD = ∂Ω, ΓN = ∅, c = 6 (using, as
before, the checkerboard-like coefficient), ν = 6 (i.e., 3ν + 1 = 19), 200 AEs
and use the irregular mesh. We apply the method for Ae = 0 with random
initial guess. The results are presented in table 4.9. We can see that the
convergence factor even improves as h decreases, since we keep θ = 0.01 instead
of decreasing it with

(
h
H

)2 (which results in increased coarse size problem).

4.4 Adaptation

We consider here a few details related to the adaptation. The main idea
and procedure are described in Section 3.5.3.2. We start with description of
the way we compute the prototype and then we describe the way we build the
adapted interpolation matrix. We finish this section by proposing an overall
adaptation strategy. We use the same notation as in Section 3.5.3.2.

4.4.1 The Prototype

The first thing we need for the adaptation procedure is the vector xbad. We
describe here the way we compute it.

As already described in Section 3.5.3.2, starting with a random initial it-
erate x0, we compute

xr =
(
I − B̂−1

TGA
′
)
xr−1, r ≥ 1.

We choose an integer parameter µ ≥ 1. We run µ iterations as above; we
normalize the initial guess and after each iteration we normalize the iterate
in A′-norm (i.e., we make ‖xr‖A′ = 1 for r = 0, . . . , µ). We define xbad =

xµ. This is the vector xbad, used in the adaptation procedure as described in
Section 3.5.3.2.

Our goal is to define a procedure that will (automatically) adapt the cur-
rently available hierarchy (if necessary) so that a target rate of convergence
is achieved. For this purpose, we use the following strategy (similar to the
one in [8]): we choose an integer parameter µ0 (1 ≤ µ0 ≤ µ and typically
µ0 � µ); we run µ iterations with a random A′-normalized initial iterate (i.e.,
‖x0‖A′ = 1) without further normalizing the consecutive iterates; we monitor
(see Section 2.2.3)

ρasympt =

(
‖xµ‖A′
‖xµ−µ0‖A′

) 1
µ0

and if ρasympt > tCF and ‖xµ‖A′ > terror, we let xbad =
xµ

‖xµ‖A′
and we adapt

the hierarchy, otherwise the current hierarchy is considered efficient enough
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and the current unchanged P is used. Here tCF and terror are given parameters
(that we choose). They define the desired convergence rate. The complete
strategy is described in Section 4.4.3.

Remark 4.14. The implementation uses also other strategies which determine
how to compute xbad (when to stop the iteration process) and when to use
it for the adaptation, or completely stop the procedure if a desired rate of
convergence is achieved. It also allows defining and using different strategies
and criteria that are not currently present. This is one of the most complicated
parts of the implementation.

Remark 4.15. We consider the computation of xbad and the assessment of the
convergence rate (and, thus, the necessity of adapting the hierarchy) together
because they are naturally related, since when testing the method it exposes
the component that the current method cannot handle. Since the smoother is
fixed, what is left to improve the method is to incorporate the component xbad

into the adapted coarse space.

4.4.2 The Adapted Interpolation Matrix

After computing xbad and deciding that adaptation is necessary we have to
adapt the current hierarchy. We describe in details our implementation of the
construction of the adapted interpolation matrix.

As we have already described in Section 3.5.3.2, for each T ∈ TH we solve(
ZTT A

′
TZT

)
qr = λr

(
ZTTD

′
TZT

)
qr. (4.2)

Then for a given tolerance θ (a parameter that we choose), we take the first
m′′T eigenvectors, where we select m′′T s.t. λr ≤ θλ′max for r = 1, . . . ,m′′T and
λr > θλ′max for r > m′′T . Here λ′max stands for the largest eigenvalue of the
generalized eigenvalue problem A′Tq

′
r = λ′rD

′
Tq
′
r. In general, we can compute

it using ARPACK and ARPACK++, however, since we use D ′T instead of D′T ,
we can use 1 as a sharp upper bound of λ′max. To solve (4.2), we use again the
same LAPACK routines as described in Section 4.2.1.

Remark 4.16. If using the method above determines m′′T to be 0, we take
m′′T = 1, that is, we select at least one eigenvector per agglomerate.

Remark 4.17. The implementation allows the use of D′T , D ′T , or any other
given s.p.d. matrix.

The choice of θ

In what follows, we discuss some strategies to choose the tolerance θ.
Consider first the case when A′ = A. For a given T ∈ TH , we have

ZTTDTZT = I, where I is the identity matrix of appropriate order (namely, of
order nT ). In the adaptation step, we solve

ZTT ATZTqr = λrqr, for r = 1, . . . , zT , (4.3)

where zT is the number of columns of ZT , i.e., it is either mT or mT + 1. Con-
sider first the case zT = mT . The vectors q1, . . . ,qmT are column vectors of ZT .
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Since qr are eigenvectors of D−1
T AT , we have that ZTTATZT = diag (λr)

mT
r=1 .

That is, we end up with the same space as before (depending on the tol-
erance θ). Namely, if we use the same θ we get m′′T = mT and, clearly,
span {q1, . . . ,qmT } = span

{
q′1, . . . ,q

′
m′′T

}
. We conclude that in this case

Range
(
P ′A

)
= Range

(
PA

)
.

Consider now the case when we add a vector to the previous local subspace,
i.e., we now have zT = mT + 1. The added vector xbad gives rise to a vector
q̂ ∈ RzT which is orthonormal, in the Euclidean inner product, to the system
of vectors q1, . . . ,qmT and ZTT ATZT q̂ = λ̂q̂, where qr ∈ RzT are the unique
vectors s.t. ZTqr = qr, for r = 1, . . . ,mT , and they are, clearly, orthonormal
in the Euclidean inner product. Also, ZT q̂ is DT -orthonormal to the system
of vectors q1, . . . ,qmT and since it is a vector in Range (ZT ), we conclude
that ZT q̂ = ±q̂. Without loss of generality, we consider ZT q̂ = q̂ and this q̂ is
unique. It is straightforward then to see that q̂ = [0, . . . , 0, 1]T . If we show that
λ̂ > θλmax (assuming we use the same θ), then we can conclude again that
m′′T = mT , span {q1, . . . ,qmT } = span

{
q′1, . . . ,q

′
m′′T

}
, and Range

(
P ′A

)
=

Range
(
PA

)
. Since q̂ ∈ span {qmT+1, . . . ,qnT }, we have

q̂ =

nT−mT∑
i=1

ciqmT+i.

The fact that q̂TDT q̂ = 1 implies that
nT−mT∑
i=1

c2
i = 1. We have

λ̂q̂ = ZTT ATZT q̂ = ZTT AT q̂

=

nT−mT∑
i=1

ciZ
T
T ATqmT+i =

nT−mT∑
i=1

ciλmT+iZ
T
TDTqmT+i.

Since we, obviously, have ZTTDTqmT+i = ci [0, . . . , 0, 1]T , we conclude that λ̂
is represented by the following convex combination

λ̂ =

nT−mT∑
i=1

c2
iλmT+i.

Therefore, λ̂ ≥ λmT+1 > θλmax. Hence, q̂, and xbad as well, do not contribute
to the coarse space, if we use the old tolerance θ, since its contribution gets
cut out.

Remark 4.18. The analysis above holds for general s.p.d. matrix DT , and in
particular applies to DT (then we can use 1 instead of λmax).

In conclusion, we do not expect any improvement if the same θ is used, since
the resulting coarse space does not change. Thus, if a required convergence rate
is to be achieved, the only way to gain improvement is increasing θ. Similarly,
when A′ 6= A if after several steps of adaptation we reach a state s.t. the
coarse space remains the same, the only way to gain larger coarse space and
hence improvement of the method, is to increase θ. This motivates our choice
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to use an increasing function ϕ(θ) of θ ∈ (0, 1) s.t. ϕ(θ) ≤ 1 for θ ∈ (0, 1] and
ϕ(1) = 1. We use such a function when implementing the adaptation strategy
(see Section 4.4.3). Our choice is ϕ(θ) = (2− θ)θ but it is not hard-coded and
our implementation allows to use any other function specified by the user.

4.4.3 Adaptation Strategy

Our goal is to construct a method that will (automatically) adapt the
hierarchy so that a desired convergence rate would be guaranteed. In this
section we formulate a somewhat conservative possible strategy for achieving
this.

Given a current hierarchy, which might have been built from scratch for A
or adapted for A (either from another matrix or from the same A), we want to
adapt the current hierarchy so that we can solve a system with a (new) matrix
A′ with a predetermined convergence rate. If A′ = A or the hierarchy was
already adapted once for A′ (and A′ 6= A) and we need to adapt it more to
achieve the desired convergence rate, then we say that we perform readaptation
or we readapt. If we do readaptation and we obtain as a result m′′T = mT for
all T ∈ TH , then we say that no new vectors are introduced. Conversely, if we
do readaptation and m′′T > mT for at least one T ∈ TH , then we have that at
least one new vector is introduced into the coarse space.

We formulate now the following adaptation strategy:

Algorithm 4.19 (Adaptation strategy). Given a current hierarchy and a tol-
erance θ, we do:

(i) Compute xbad and check the convergence rate. If we have met a desired
criteria, stop the procedure and use the current hierarchy. Otherwise, go
to step (ii).

(ii) Adapt the hierarchy based on xbad and the given θ. Continue with the
next step.

(iii) If a new coarse hierarchy has been created or not enough readaptation
steps have been performed (in case when no new vectors have been intro-
duced), we go to step (i) to test the new hierarchy or get a new prototype
vector. Otherwise, if a maximum allowed readaptation steps were per-
formed without introducing new vectors, increase θ, i.e., θ ← ϕ(θ), and
go to step (ii).

We note that once a new vector has been introduced into the coarse space,
we reset the counter for readaptation steps to zero. The maximum allowed
readaptation steps (in case no new vectors have been introduced) is a global
integer parameter that we choose. We denote it as χ. The above strategy is
quite conservative w.r.t. θ. That is, it tries to exhaust all possible vectors in
all AEs for the current θ, and it only increases θ if the coarse space does not
change for all AEs and when the desired rate of convergence has still not been
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θ̂ ϑ # coarse dofs |Aac | ρ̃TG
0.01 0 774 14320 0.995
0.0772553 3 1033 25233 0.992
0.148542 4 1063 26711 0.706
0.27502 5 1069 26975 0.697
1 — 1074 27208 0.391

Table 4.10: The convergence when a single adaptation step is applied for the
unchanged matrix using 300 AEs, ν = 6, c = 6, and µ = 10 on the irregular mesh
with 102400 elements and 51681 vertices. The initial coarse space is built using
θ = 0.01 and during the adaptation θ = θ̂ is used, computed calling ϑ times ϕ(θ)
starting from θ = 0.01.

achieved. We do not claim that this is the best strategy or even a very good
one in many cases.

Remark 4.20. When readaptation is being performed m′′T = mT does not gen-
erally imply that Range

(
P ′A

)
and Range

(
PA

)
are the same. Often, when no

new vectors are introduced the coarse space is actually changed. Still, we use
m′′T = mT as a criterion to decide when to increase θ, since the only way to
achieve arbitrarily good rate of convergence is to increase θ at some point.

Remark 4.21. Assume we have constructed a hierarchy adapted for A′ that
satisfies the criteria for the desired convergence rate used in Algorithm 4.19
and let Algorithm 4.19 has exited with θ = θ̂. If we want to further adapt this
hierarchy for a new A′′, we can either start with θ = θ̂, or we can start with
some globally predefined initial value for θ.

Remark 4.22. Assume we have created a hierarchy corresponding to A that we
adapt for a new A′. It is likely to get a smaller coarse space compared to the
one for A. Thus, some of the data from the hierarchy for A is lost and cannot
be reused in further adaptation steps, e.g., from A′ to A′′ or even when we do
readaptation for A′. Our implementation has the option to “accumulate” all
vectors used for previous hierarchy adaptations and thus reuse all the history
data. However, in general this becomes too expensive and is unclear if it can
lead to a method that is competitive with simply building a hierarchy from
scratch.

4.5 Numerical Results with Adaptation

We are now ready to present results from numerical experiments with the
described adaptation strategy.

We first present results when adapting for a fixed PDE coefficient (and,
respectively, fixed matrix, i.e., when A′ = A), and next we present various
experiments with changing coefficients (and, respectively, changing matrices).

In what follows, we use relative tolerance tr = 10−12, absolute tolerance
ta = 0, ε = 10−8 (same as in Section 4.3), and, as described above, ϕ(θ) =

(2− θ)θ. The coarse solver uses direct solver based on Cholesky factorization.
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θ̂ ϑ # coarse dofs |Aac | ρ̃TG
0.01 0 774 14320 0.995
0.0772553 3 1027 25009 0.992
0.148542 4 1060 26576 0.545
0.27502 5 1067 26897 0.552
1 — 1074 27208 0.547

Table 4.11: The convergence when a single adaptation step is applied for the
unchanged matrix using 300 AEs, ν = 6, c = 6, and µ = 30 on the irregular mesh
with 102400 elements and 51681 vertices. The initial coarse space is built using
θ = 0.01 and during the adaptation θ = θ̂ is used, computed calling ϑ times ϕ(θ)
starting from θ = 0.01.

θ # coarse dofs |Ac| ρ̃TG |Âc| ρ̂TG
0.01 774 14320 0.995 29448 0.949
0.0772553 3629 307939 0.883 636671 0.159
0.148542 6557 1003851 0.715 2074291 0.069
0.27502 12279 3518105 0.075 7266145 0.002

Table 4.12: The convergence on the irregular mesh with 102400 elements and
51681 vertices using 300 AEs, ν = 6, c = 6 and varying θ. The hierarchy is built
from scratch and no adaptation is used. |Âc| and ρ̂TG correspond to the case
when the tentative interpolant is smoothed using sν

(
D−1A

)
.

The convergence factor is estimated (see Sections 4.3 and 2.2.3) by applying
the solver to a system with a zero right-hand side letting ρ̃TG = ‖em‖A

‖em−1‖A (where
m is the last iteration used).

4.5.1 Adaptation for a Fixed PDE Coefficient

We illustrate the adaptation performance with numerical experiments in
the case when A′ = A. We first show results using a single adaptation step.
Next, we experiment with the adaptation strategy described in Section 4.4.3
and we also test an alternative simpler strategy.

Single Adaptation Step

In this paragraph we show results obtained when only one step of adapta-
tion is applied. Also, a comparison is made with building the hierarchy from
scratch.

Consider the case corresponding to the results in table 4.3 with contrast
c = 6, polynomial degree 3ν + 1, ν = 6, and spectral tolerance θ = 0.01.
We remind that we smooth the tentative interpolant using I − D−1A. We
build the hierarchy first, then we compute xbad using µ = 10, normalizing
each iterate in A-norm (see Section 4.4.1), and we adapt the hierarchy using
the same θ. As expected, the number of coarse dofs, ρ̃TG, and |Ac| remain
unchanged, since the coarse space remains the same (see Section 4.4.2, “The
choice of θ”). This and more results are presented in table 4.10, where Aac
denotes the coarse operator in the adapted coarse space. We next compare the
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results in tables 4.10, 4.11 and 4.12. Considering the size of the coarse space
and the sparsity of the coarse operator it is easy to see (for the experiments
here) the advantage of the adaptation over building the hierarchy from scratch
as far as the choice of θ for a fixed ν is concerned.

Remark 4.23. When computing the results in tables 4.10 and 4.11, for each
row a separate newly computed xbad is used.

Applying the Complete Adaptation Strategy

We present results from numerical experiments with the strategy proposed
in Section 4.4.3. We also show results with an alternative and somewhat more
aggressive (w.r.t. θ) strategy. In what follows we use µ = 20, µ0 = 4, tCF = 0.1,
and terror = 10−14.

Consider again the case corresponding to the results in table 4.3. Applying
the adaptation strategy described in Algorithm 4.19 we get the results shown
in table 4.13.

Consider an agglomerated element T ∈ TH and a current local tentative
interpolant PA produced using eigenvectors q1, . . . ,qmT . When we adapt we
obtain the eigenvectors q′1, . . . ,q′m′′T that we use to produce the adapted local

tentative interpolant P ′A and, also, for the local eigenvalue problems if further
adaptation is employed. We implement the option to replace q′1, . . . ,q

′
m′′T

by
the old vectors q1, . . . ,qmT in the case whenm′′T = mT . This effectively results
in PA = P ′A and if further adaptation is applied, q1, . . . ,qmT are used for the
local eigenvalue problems. That is, the adaptation changes nothing in the hi-
erarchy related to T . Using this option we get the results in table 4.14. The
advantage of using this option is that the adaptation process is in a sense more
predictable and the results are more stable. Namely, we observe monotone
improvement of the convergence rate and the finial results for many executions
of the experiments are almost the same, while without this option the conver-
gence rate may jump back and forth with large amplitude and sometimes the
final results may differ noticeably when the experiments are executed multi-
ple times. However, we cannot draw a general conclusion whether this option
results in a better or worse performance. For the experiments presented here,
the performance is almost the same regardless of whether the option to keep
the same vectors is used or not.

Introduce the following alternative, somewhat simpler aggressive (w.r.t. θ),
strategy.

Algorithm 4.24 (Aggressive adaptation strategy). Given a current hierarchy
and a tolerance θ, we do:

(i) Compute xbad and check the convergence rate. If we have met a desired
criteria, stop the procedure and use the current hierarchy. Otherwise, go
to step (ii).
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(ii) Adapt the hierarchy based on xbad and the given θ. Continue with the
next step.

(iii) Increase θ, i.e., θ ← ϕ(θ), and go to step (i).

Applying Algorithm 4.24 we get the results in table 4.15. Instead of apply-
ing methods and criteria for increasing θ we can set θ = 1 during the adaptation
which results in adding all local restrictions of xbad to the hierarchy and thus
increasing the number of coarse dofs within the number of agglomerated ele-
ments on each hierarchy adaptation. Observe the results in table 4.16. The
results show the advantage of the aggressive strategy over the conservative one
(for the presented experiments here). The aggressive approach (including the
use of θ = 1 during the adaptation) is recommended in case the hierarchy built
from scratch suffers from severe deficiencies resulting in very slow convergence
(which is the case of the experiments presented here).

4.5.2 Adaptation for Changing PDE Coefficients

We present results from experiments with the adaptation in the case when
the coefficients of the PDE change, i.e., the matrices of the arising linear sys-
tems change. We first illustrate the case when two coefficient realizations are
involved and, next, we show results when multiple realizations of the coefficient
take place.

We use the regular mesh with 131072 elements and 66049 vertices divided
into 200 agglomerated elements. We also set ν = 6, χ = 1, µ = 15, µ0 = 4,
terror = 10−14, θ = 0.01 (when building the hierarchy from scratch), f = 1,
g = 0 (see (1.1)), ΓD = ΓE ∪ ΓW , and ΓN = ΓN ∪ ΓS (see Section 1.4.5).

All coefficients used in this section are generated (simulated) by a tool1

that implements a Markov Chain Monte Carlo (or MCMC) algorithm and,
thus, it outputs coefficients suitable for our experiments (any two consecutive
realizations are in some sense “close”).

Two Coefficient Realizations

This paragraph is devoted to numerical experiments with the adaptive SA-
AMGe when two coefficient realizations are involved.

Denote the two coefficients we use as k′ and k′′. An illustration of these
coefficients is shown in fig. 4.9. Consider the results in Table 4.17 and par-
ticularly the last row. It is a typical example of what we want to achieve by
the adaptation strategy, namely, the resulting adapted coarse space to have
smaller size compared to the original coarse space it has been derived from.

Consider tables 4.18 and 4.19. The former presents results using the original
hierarchy (the one built from scratch) for k′ which is being adapted to k′′,
while the latter shows the results when the original hierarchy for k′ first gets
readapted and then adapted to k′′.

We can see the advantage of using adaptation over building the hierar-
1Implemented by Christian Ketelsen.
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Parameters/Results Value
θ when building from
scratch

0.01

initial θ for the adap-
tation

0.01

χ 1
ρ̃TG when building
from scratch

0.995

# coarse dofs when
building from scratch

774

OC when building
from scratch

1.04055

# readaptation itera-
tions

21

times xbad computed 17
# ϕ(θ) calls 4
final θ 0.148542
final ρ̃TG 0.154
final # coarse dofs 1773
final OC 1.20997
final ρasympt 0.141077
final ‖xµ‖A′ 5.66873× 10−21

Parameters/Results Value
θ when building from
scratch

0.01

initial θ for the adap-
tation

0.01

χ 4
ρ̃TG when building
from scratch

0.995

# coarse dofs when
building from scratch

774

OC when building
from scratch

1.04055

# readaptation itera-
tions

60

times xbad computed 56
# ϕ(θ) calls 4
final θ 0.148542
final ρ̃TG 0.162
final # coarse dofs 1667
final OC 1.18718
final ρasympt 0.162195
final ‖xµ‖A′ 4.40642× 10−19

Parameters/Results Value
θ when building from
scratch

10−6

initial θ for the adap-
tation

10−6

χ 1
ρ̃TG when building
from scratch

> 0.999

# coarse dofs when
building from scratch

338

OC when building
from scratch

1.00766

# readaptation itera-
tions

56

times xbad computed 39
# ϕ(θ) calls 17
final θ 0.122845
final ρ̃TG 0.246
final # coarse dofs 1428
final OC 1.13612
final ρasympt 0.246326
final ‖xµ‖A′ 1.46065× 10−15

Parameters/Results Value
θ when building from
scratch

10−6

initial θ for the adap-
tation

10−6

χ 4
ρ̃TG when building
from scratch

> 0.999

# coarse dofs when
building from scratch

338

OC when building
from scratch

1.00766

# readaptation itera-
tions

149

times xbad computed 131
# ϕ(θ) calls 18
final θ 0.2306
final ρ̃TG 0.176
final # coarse dofs 1975
final OC 1.26025
final ρasympt 0.176201
final ‖xµ‖A′ 2.58888× 10−18

Table 4.13: Readaptation on the irregular mesh with 102400 elements and
51681 vertices using 300 AEs, ν = 6, and c = 6. Algorithm 4.19 is applied.
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Parameters/Results Value
θ when building from
scratch

0.01

initial θ for the adap-
tation

0.01

χ 1
ρ̃TG when building
from scratch

0.995

# coarse dofs when
building from scratch

774

OC when building
from scratch

1.04055

# readaptation itera-
tions

22

times xbad computed 18
# ϕ(θ) calls 4
final θ 0.148542
final ρ̃TG 0.163
final # coarse dofs 1745
final OC 1.20533
final ρasympt 0.167335
final ‖xµ‖A′ 6.14103× 10−20

Parameters/Results Value
θ when building from
scratch

0.01

initial θ for the adap-
tation

0.01

χ 4
ρ̃TG when building
from scratch

0.995

# coarse dofs when
building from scratch

774

OC when building
from scratch

1.04055

# readaptation itera-
tions

49

times xbad computed 45
# ϕ(θ) calls 4
final θ 0.148542
final ρ̃TG 0.249
final # coarse dofs 1536
final OC 1.15781
final ρasympt 0.24923
final ‖xµ‖A′ 4.41356× 10−15

Parameters/Results Value
θ when building from
scratch

10−6

initial θ for the adap-
tation

10−6

χ 1
ρ̃TG when building
from scratch

> 0.999

# coarse dofs when
building from scratch

338

OC when building
from scratch

1.00766

# readaptation itera-
tions

56

times xbad computed 38
# ϕ(θ) calls 18
final θ 0.2306
final ρ̃TG 0.151
final # coarse dofs 2150
final OC 1.30587
final ρasympt 0.158094
final ‖xµ‖A′ 3.40575× 10−20

Parameters/Results Value
θ when building from
scratch

10−6

initial θ for the adap-
tation

10−6

χ 4
ρ̃TG when building
from scratch

> 0.999

# coarse dofs when
building from scratch

338

OC when building
from scratch

1.00766

# readaptation itera-
tions

118

times xbad computed 100
# ϕ(θ) calls 18
final θ 0.2306
final ρ̃TG 0.159
final # coarse dofs 2104
final OC 1.29327
final ρasympt 0.158403
final ‖xµ‖A′ 1.95828× 10−20

Table 4.14: Readaptation on the irregular mesh with 102400 elements and
51681 vertices using 300 AEs, ν = 6, and c = 6. Algorithm 4.19 is applied with
the old vectors kept in the case when m′′T = mT .
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Parameters/Results Value
θ when building from
scratch

0.01

initial θ for the adap-
tation

0.01

ρ̃TG when building
from scratch

0.995

# coarse dofs when
building from scratch

774

OC when building
from scratch

1.04055

# readaptation itera-
tions

7

times xbad computed 7
# ϕ(θ) calls 6
final θ 0.474404
final ρ̃TG 0.129
final # coarse dofs 1715
final OC 1.19661
final ρasympt 0.135209
final ‖xµ‖A′ 6.15045× 10−22

Parameters/Results Value
θ when building from
scratch

10−6

initial θ for the adap-
tation

10−6

ρ̃TG when building
from scratch

> 0.999

# coarse dofs when
building from scratch

338

OC when building
from scratch

1.00766

# readaptation itera-
tions

20

times xbad computed 20
# ϕ(θ) calls 19
final θ 0.408023
final ρ̃TG 0.229
final # coarse dofs 1505
final OC 1.14975
final ρasympt 0.232115
final ‖xµ‖A′ 3.74469× 10−17

Table 4.15: Readaptation on the irregular mesh with 102400 elements and
51681 vertices using 300 AEs, ν = 6, and c = 6. Algorithm 4.24 is applied.

Parameters/Results Value
θ when building from
scratch

0.01

initial θ for the adap-
tation

1

ρ̃TG when building
from scratch

0.995

# coarse dofs when
building from scratch

774

OC when building
from scratch

1.04055

# readaptation itera-
tions

3

times xbad computed 3
final ρ̃TG 0.229
final # coarse dofs 1374
final OC 1.12525
final ρasympt 0.22222
final ‖xµ‖A′ 2.86497× 10−17

Parameters/Results Value
θ when building from
scratch

10−6

initial θ for the adap-
tation

1

ρ̃TG when building
from scratch

> 0.999

# coarse dofs when
building from scratch

338

OC when building
from scratch

1.00766

# readaptation itera-
tions

4

times xbad computed 4
final ρ̃TG 0.185
final # coarse dofs 1238
final OC 1.10035
final ρasympt 0.186636
final ‖xµ‖A′ 1.98873× 10−18

Table 4.16: Readaptation on the irregular mesh with 102400 elements and 51681
vertices using 300 AEs, ν = 6, and c = 6. Algorithm 4.24 is applied starting with
θ = 1.
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4.5 Numerical Results with Adaptation

(a) The first coefficient — k′ (b) The second coefficient — k′′

Figure 4.9: Two coefficient realizations. (They are piecewise constant on the
mesh elements but are displayed as continuous for better appearance.)

Coefficient # coarse dofs OC m ρ̃TG
k′ 765 1.06035 21 0.403
k′′ 463 1.02236 16 0.365
k′, k′′ 765 1.06035 243 0.948
k′ → k′′ 400 1.01674 23 0.674

Table 4.17: Results for two coefficient realizations on the regular mesh with
131072 elements and 66049 vertices using 200 AEs and ν = 6. The first two rows
correspond to the case when for each coefficient a hierarchy is built from scratch
using θ = 0.01. The third row corresponds to the case when the unchanged (not
adapted) hierarchy built for k′ is applied for k′′. The last row corresponds to the
case when a single step of adaptation, using θ = 0.01, is applied (using µ = 15
without normalizing the approximations of xbad on each step).

Parameters/Results Value
terror 10−14

tCF 0.4

initial θ for the adap-
tation

0.01

χ 1
# adaptation itera-
tions

3

times xbad computed 3
# ϕ(θ) calls 0
final θ 0.01
final ρ̃TG 0.394
final # coarse dofs 405
final OC 1.01721
final ρasympt 0.393988
final ‖xµ‖A′ 2.82649× 10−10

Parameters/Results Value
terror 10−14

tCF 0.3

initial θ for the adap-
tation

0.01

χ 1
# adaptation itera-
tions

5

times xbad computed 4
# ϕ(θ) calls 1
final θ 0.0199
final ρ̃TG 0.341
final # coarse dofs 432
final OC 1.01956
final ρasympt 0.340607
final ‖xµ‖A′ 3.30739× 10−15

Table 4.18: Results on the regular mesh with 131072 elements and 66049 ver-
tices using 200 AEs and ν = 6. Algorithm 4.19 is applied for adapting the
hierarchy built from scratch for k′ to k′′.
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Parameters/Results Value
terror 10−14

tCF 0.3

initial θ for the adap-
tation

0.01

χ 1
# readaptation itera-
tions

7

times xbad computed 5
# ϕ(θ) calls 2
final θ 0.039404
final ρ̃TG 0.201
final # coarse dofs 939
final OC 1.09097
final ρasympt 0.198408
final ‖xµ‖A′ 1.53652× 10−14

(a) Readapting the hierarchy for k′.

Parameters/Results Value
terror 10−14

tCF 0.3

initial θ for the adap-
tation

0.01

χ 1
# adaptation itera-
tions

5

times xbad computed 4
# ϕ(θ) calls 1
final θ 0.0199
final ρ̃TG 0.234
final # coarse dofs 429
final OC 1.01927
final ρasympt 0.225613
final ‖xµ‖A′ 3.10333× 10−16

(b) Adapting the final hierarchy for k′

to k′′.

Table 4.19: Results on the regular mesh with 131072 elements and 66049 ver-
tices using 200 AEs and ν = 6. Algorithm 4.19 is applied first to readapt the
hierarchy for k′ and then to adapt it to k′′.

chy from scratch. Namely, in just a few adaptation iterations we obtain a
smaller coarse space, compared to building the hierarchy from scratch, while
the convergence rate is almost the same.

Multiple Coefficient Realizations

Since the described method is expected to be applied for many coefficient
realizations, we show results when more than two coefficient realizations are
used.

The results are for a small number of realizations that are in a way chal-
lenging. We generate forty realizations of the coefficient and we use the same
set of realizations for the following two experiments. First, we apply the SA-
AMGe method without adaptation by building the hierarchy from scratch for
each coefficient (see the results in table 4.20). Next, we apply the adaptive
SA-AMGe by producing the hierarchy from scratch for the first realization
and then successively adapting the current realization to the next one (see the
results in table 4.21). ρ̃TG is computed by running a fixed number (m = 50)
of iterations of the method for each coefficient realization.

We can see that we benefit from the adaptation versus building hierarchies
from scratch. The source of the advantage is that the consecutive coefficient
realizations are “close” to each other. Thus, as the results show, often adapta-
tion is not necessary and the old hierarchy can be directly reused, and in case
adaptation is necessary, a few iterations of the adaptation strategy are usually
enough. The advantage of adaptation over building hierarchies from scratch is
even larger when the agglomerated elements are large thus resulting in large
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4.6 Conclusions

Parameters/Results Value
θ 0.01
ρ̃TG (minimal/maximal/mean) 0.361/0.773/0.583
# coarse dofs (minimal/maximal/mean) 466/805/556.875
OC (minimal/maximal/mean) 1.02222/1.06651/1.03272925

Table 4.20: Results for 40 coefficient realizations on the regular mesh with
131072 elements and 66049 vertices using 200 AEs and ν = 6. The hierarchy is
built from scratch for each coefficient realization. Arithmetic mean is used.

Parameters/Results Value
terror 10−14

tCF 0.5

initial θ for all realizations 0.01
χ 1
times (re)adaptation needed 19
# (re)adaptation iterations (minimal/maximal/mean/total) 1/11/4.263/81
times xbad computed (minimal/maximal/mean/total) 2/10/4.421/105
ρ̃TG (minimal/maximal/mean) 0.266/0.759/0.489
# coarse dofs (minimal/maximal/mean) 361/805/524.925
OC (minimal/maximal/mean) 1.01325/1.06651/1.02978675

Table 4.21: Results for 40 coefficient realizations on the regular mesh with
131072 elements and 66049 vertices using 200 AEs and ν = 6. Algorithm 4.19 is
applied. Arithmetic mean is used. For “# (re)adaptation iterations” and “times
xbad computed” minimal, maximal, and mean are computed among all calls to
Algorithm 4.19 whenever adaptation was necessary.

local eigenvalue problems. Solving these problems is slow and so is building the
hierarchy from scratch whereas the adaptation is still fast since we solve each
eigenvalue problem in substantially smaller subspace. In general, adaptation
is recommended when the consequent matrices of the systems being solved are
in some sense “close” (as it turns out in the MCMC simulations), otherwise
it may turn out that building hierarchies from scratch may be the preferable
way.

4.6 Conclusions

At the end we draw some conclusions and outline directions for possible
further development and improvements.

We have described an adaptive SA-AMGe method that can be used for
solving many linear systems arising from finite element discretizations of sec-
ond-order elliptic PDEs with random coefficients. The adaptation strategy
that we have employed showed clearly its advantage over building two-level
solvers from scratch when the PDE coefficient changes from one state k′ to a
next one, k′′. The once build two-level hierarchy can be reused for subsequent
realizations of the coefficient and, if necessary, it can be quickly adapted so
that a desired rate of convergence is achieved. The method demonstrates a
good potential and its applications are not limited to Monte Carlo simulation
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of diffusion equations with stochastic coefficients. For example, the strategy
can be applied for solving discretizations of a sequence of linear PDEs obtained
by Picard linearization of (deterministic) nonlinear PDEs.

A natural candidate for further development is working out and implement-
ing a multilevel extension of the two-level method described in this thesis. Al-
though the method allows for aggressive coarsening that results in small coarse
spaces, a multilevel extension of the method will lead to even better efficiency
due to the better complexity of the resulting solvers.

There is also a potential in constructing improved Monte Carlo simulations
utilizing the hierarchy of coarse spaces, if information between the hierarchies
for the solver and the actual Monte Carlo method is “exchanged” and reused.

Finally, there is a potential of improvements in our software implementa-
tion. We have pointed out on some weaknesses that need further attention,
such as the issue with potentially empty aggregates (see Section 4.1.3, “Empty
Aggregates”). A natural and desirable major future development is imple-
menting a parallel version of the method (both, two- and multilevel versions).
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